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We study the statistical properties of a chaotic beam of quantum particles (bosons or fermions) by using 
wavepacket formalism, which allows us to deal with bosons and fermions in a very symmetrical way. 
Our study is based on the definition and analysis of two different stochastic point processes consisting, 
respectively, of the "emission" time instants and detection time instants (or positions in a space) of the 
particles of the beam. The two processes are shown to be identical in the chaotic boson case and in the 
chaotic fermion case, respectively. The symmetry between the well-known results concerning the photon 
detection process and the new results concerning the fermion detection process is pointed out. And 
finally it is noted that in the chaotic case the bunching (or anti bunching) effect is present already in the 
"emission" of the particles. 

I. INTRODUCTION 

The present paper is a part of our study of the statisti­
cal properties of quantum particle beams (bosons or 
fermions).l It is based on the use of wavepacket for­
malism which has the great advantage of dealing with 
bosons and fermions in a very symmetrical way. Wave­
packet formalism consists of associating a stochastic 
wavepacket with every particle and of building the state 
of the whole set of particles by symmetrization or anti­
symmetrization. 

The statistical properties we are specially interested 
in, in this paper, are the stochastic laws of two point 
processes which can be defined in a particle beam. One 
is the ideal detection2 process, that is the point process 
consisting of the ideal-detection time instants (or posi­
tions in space) of the particles. The other one is defined 
here in connection with wavepacket formalism. It is 
called the "emission process" and actually corresponds 
to emission time instants of the wavepackets if certain 
conditions for the excitation of the particle source are 
fulfilled. 

The beams considered here are "chaotic" beams.2 In 
the photon case, this means that the moments of all 
orders of the electromagnetic field associated with the 
photons are identical to the moments of a stationary 
Gaussian stochastic function. From this definition, as 
shown by Mollow,3 certain properties of the density 
matrix of a chaotic photon field follow. Similar proper­
ties are used by Glauber to define the chaotic fermion 
denSity matrix.2 ThUS, our starting point is the chaotic 
density matrix given by Glauber2 in terms of wave­
packets for bosons and fermions. We use it to define 
the chaotic "emission process" and establish several 
results for this process as well as for the detection 
process. After giving some definitions and notations 
in Sec. IT, we deal first with the photon case in Sec. m. 
In this section, starting with the results of Glauber and 
from those of Macchi,4 we establish the identity between 
"emission" and detection processes. At the same time, 
we give the expression for the exclusive probability 
densities of these processes in terms of the wavepacket 
covariance. This new result achieves the statistical 
description of these two processes. In Sec. IV, we deal 
with the chaotic fermion case and settle the probability 
distribution of both the detection and "emission" point 
processes for fermions. These two processes are 
shown to be identical. It is also pointed out how, in the 
photon case as well as in the fermion case, exclusive 
probability densities are related to the wavepacket co­
variance, while coincidence probability densities are 
related to a "field covariance." 
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The symmetry between the results obtained for chaotic 
bosons and fermions, respectively, is also pointed out. 

II. DEFINITIONS AND NOTATIONS 

The various processes formed with, the particle posi­
tions in space consist of random events located in infi­
nitesimal volumes {rj , dr.} of JR3. More simply, we may 
consider that a particle process consists of random 
points r; of JR3, and thus forms what is called a stochas­
tic point process (pp). Obviously the number of parti­
cles within any finite volume V is finite with probability 
one. Moreover, the particles are assumed to be en­
closed in a finite "parallelepipedic" volume V. Hence 
actually all our pp are restricted to V, which avoids 
mathematical difficulties linked with the unboundedness 
of JR3. 

We shall consider two different pp which are the "emis­
sion process" and the detection process. For the sake 
of Simplicity, they are assumed to be purely spatial pro­
cesses and in order to avoid confusion the events of 
these pp are denoted by {rj } and {aj }, respectively. 

A. General properties of point processes 

In order to define the probability distribution of a pp 
in V, one must give all the values HfI. (Av jl' ••• ,A k,j k) 
called "exclusive probabilities" which are the probabili­
ties of exactly n events in V, with exactly jl events in 
A l , ••• ,and exactly j k events in A k for all nonnegative 
integers k,jl"" ,jk' The sets Av ... ,Ak are any k 
Borel sets of V. Obviously, the set function Hn must be 
(a) nonnegative, (f3) symmetrical, and (y) 0'-additive. 5 In 
addition, one must have the unit property (0): 

00 

L; H II. ( V, n) == 1. 
n~O 

As intuition would lead us to expect, it can be shown that 
any system of set functions Hn (A V j l' ••• ,Ak,j k) satis­
fying (a)-(o) actually defines a pp. 

Now almost all pp that exist in nature possess another 
important property, that of being "continuously distri­
buted." Mathematically, this means that if B V ••• ,B II. 
are n diSjoint Borel sets of V, and if we call B the pro­
duct set B 1 X - •• x Bn , the set function defined in V n by 
Hn(B) == Hn(Bl' 1, ... ,Bn, 1) is absolutely continuous 
with respect to the Lebesgue measure in vn. In physics 
this means that (almost everywhere) all the exclusive 
probabilities Hn possess densities. Hence there exists 
a system of "point functions" G :[{xj}J such that for n in­
finitesimal intervals {xj , dxj } of width dxj' each of them 
containing point Xj' respectlvely, we have 
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Hn ({x1 ,dx1}, 1, ... ,{xn,dxn }, 1) = e,n{xj }] dx1 ' ., dxn • 

Therefore,G %[{xj}] dx l ' .• dx,. is the probability that there 
is one event in {Xl' dx l } , ••• , another one in {x,. , <Ix,,} , 
and none other in the whole volume V in which the par­
ticles are confined. The e nix)] are called "exclusive 
probability densities" (epd). They are obviously sym­
metrical functions of their arguments because of (m, 
e ,;'(x1 ' ... , xn) = e ,;'(xa , ... , xa ) for all permutations 

1 n v{} >' a l , ... , Un of 1, ... ,n. Moreover, the en Xj 1 ",hlCh are 
the densities of a positive set measure must be non­
negative 

In addition the probability Pn of n events in V is 

Pn = 1- j nG~[{Xj}ldxl" .dxn , 
n! v 

(P.O) 

on account of the symmetry. Thus condition (6) implies 
that 

00 1 
6 - i G V[{x.}]dx l ••• dx = 1. (P.1) 
noD n! V n n J Il 

Conversely, a system of symmetrical, nonnegative func­
tions G 1T{Xj}] verifying Eq. (P. 1), defines the distribution 
of an actual pp, which is "continuously" distributed, 
with epd G;T{xj}]. This system is therefore a very prac­
tical means to define a pp, and we use it herein. 

Another system of probabilities appears useful for the 
study of pp. For disjoint Borel sets AI"" ,An (A. C V) 
we define the coincidence probability Q n (A l' ... , An) as 
the probability of exactly one event in AI' .•. , exactly 
one event in An' the total number P of events in V being 
arbitrary. Let B = V - 6;01 Aj , then the probability of 
one event in each of the Aj and p - n events in B is 
found to be 

__ 1_ J dxl ··· J dxn jp-n GJ[{xj})dx n+I ••• dxp, 
(p _ n)! Al An B 

and thus 
Q() 

1 
Qn(A 1 ,··· ,An) == 6 

pon (p -n)! 

This equation shows that coincidence probabilities also 
admit densities, say Pn[{Xj}] , called "coincidence proba­
bilities densities" (cpd). Their physical definition is 
Pn[{Xj}] dx l · .. dxn == P r [one event in each interval {Xj' 
dxj }]. 

Moreover, it appears in the above series that the cpd 
are expressed in terms of the epd, by the series 

"" 1 
Pn[{xj }] == 6 - ik G';+k(xV""xn+k)dxn+l···dxn+k· 

k"O k! v 
It can be shown (see Ref. 6) that this formula has an in­
verse, 

'v } ~ (- l)PJ Gn[{Xj ] == LJ -- P Pn+p(xI ,··· ,xn+p)dxn+ I " 'dxn+p' 
p~O p! v 

which is basic for Appendix D. 

B. Modes in a cavity 

We shall consider the modes in a finite cubic cavity of 
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volume V == L3. Each mode is labeled by a wavevector 
k with components 

kx == PxIL, ky == PyIL, k. == P.IL, 

where Px,Py,p. are three arbitrary integers (but not all 
three zero). As is well known 1.3 can be mapped into 1. 
by a one-to-one correspondence. Hence there is a count­
able collection {k} of vectors k. When necessary, they 
may be treated as a sequence kl' ... , k p ••.•. 

A product over all the modes of the cavity is symbolized 
by IT k' and a sum by 6 k' These quantities must be abso­
lutely convergent in order to be significant, since no 
order is given in the collection {k} . 

The nonnegative integer nk is the number of particles in 
mode k. The mean value of nk is denoted by (nk ). 

The symbol {nk} indicates a sequence of nonnegative in­
tegers {n l' •• , ,np' ••• } ,np being the number of particles 

in mode kp, and 6{nk} indicates the summation over all 
such sequences. 

C. Other notations 

We shall use the following notations: ( ... ), which means 
ensemble average; I), which is a vector in the Fock 
space. For short, we call it a "ket"; ~ P a' which indi­
cates a sum over all the permutations ~l"'" an of 1, 
... ,n; 6 P a (- 1), which indicates an algebraic sum 
over all the permutations ~1' ••• , an' with coefficients 
(- 1)p(a) ,where p(a) is the order of the permutation 
aI' .,., an (these two latter notations can be summed 
up into one notation which is 6 P a (€), with € == ± 1); 
£2(V")(£1(vn», which is the space of functions <p(r) 
verifying 

I 1 <1>(1'1"'" rn) 12 dr1,· .drn < ro, vn 

(Ivn 1<l>(rl> ... ,rn)1 drl,,·drn <ro.) 

III. PHOTON CASE 
A. Expression of the "chaotic" density matrix in terms 

of wavepackets 

The density matrix p of a set of photons in a "chaotic 
state" and localized in a finite volume V, can be written 
as2 •3 

(n k) nk 

p==={~} ~ (1 + (nk»l+nk I{nk}) ({nk}l, (1) 

or, in an equivalent form, as 

p = IIT exp (- 1 ak 12) I{~k}) ({a
k

} 1 d
2

a k 

k (nk) (nk> 
(2) 

In Eq. (2), ak is any complex number and I{ak }) symbo­
lizes a state in which, for each mode k, the photons are 
in the coherent state 1 ak ). 7 [If a k is the annihilation 
operator in mode k, we have a k 1 ak ) == ~k I ak ). J 
By definition, a "chaotic state" is such that all the mo­
ments7 of the electromagnetic field E(l', t) associated 
with the photons are identical to the moments of a sta­
tionary Gaussian stochastic function. In Ref. 3, Mollow 
has shown that, if these moments are assumed to be 
bounded, the chaotic density matrix can be written in 
form (1) or (2). If (nk ) is chosen to be equal to 
expliwk(l - expffwkti (where wk is the angular fre­
quency of mode k), the "chaotic state" describes thermal 
equilibrium. 
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Construction of the wavepackets In( 1 fj I) 
In Ref. 2 Glauber gives the chaotic density mat ric p in 
terms of the wavepackets In ({rj }». The ket In ({rj}» 
describes in the Heisenberg picture, a set of n one­
photon wavepackets, in the neighborhood of points 
r 1 , •.• , r n' If the excitation of the source is assumed 
to be "broadline" 8 (Condition H 1)' wavepacket "emission 
times" t. ,or, more correctly, source "excitation times" 
can be i~troduced by setting rj = - ctj,1 where c is the 
light velocity vector in direction r j . Then the ket 
In ({ r j}» describes a set of none-photon wavepackets 
excited at time instants t1 , ... ,tn' Thus, if Condition H 1 

is fulfilled, we shall speak of an "emission process" that 
is the point process built with points rj. In a general 
way, the point process built with points rj will be called 
"emission process" even though no information about 
the source allows us to give a physical meaning to the 
time instants t .. Let us now build the kets In ({ r }) as 

J 
done in Ref. 2. Let 10) represent the vacuum state, 
a~(a k) be the creation (annihilation) operator in mode k 
[a"IO) = Ik),and [a+ka k.] = 0kk.],andA+ be the following 
operator 

N = 6 !(k)a~, 
k 

where the complex function! (k) is such that 

6 I!{k) 12 = 1; (3) 
k 

the ket N 10) describes a one-photon wavepacket with 
spectral density I! (k) 12. 

The ket A+(r.) 10), deduced from N 10) by a translation 
of r· in the donfiguration space of the particles, is 
wrilten 

A+(r) 10) = exp - iPrjA+ 10) 

= 6 !(k) exp(- 2inke r j) a; 10). 
k 

In this equation,P is the impulsion of the particle and 
the operator exp(- iPrj) is the displacement operator. 
The ket A+ (rj) 10) describes a wavepacket "emitted" at 
point r j . Thus the ket In ({ rj}» is written 

" In ({rj }» = [Wn ({r j })]-1/2 /11 A+(rj ) 10). 

Function Iv,. ({rj}), introduced to normalize vector 
In ({rj}), is given by 

n 

Wn ({ r j }) = (0 I ~ A(rj ) A+(rj ) I 0), 
J~1 

n 

W,,({rj}) = 6 Pa n y(rj - raJ, 
j~1 ) 

where 

y (rj - r a) = (0 I A(rj ) A+(ra ) I 0) 
) J 

(4) 

(5) 

= 6 I !(k) 12 exp[2ink e (rj - raJ]. (6) 
k ) 

Let us emphasize that the latter equation can be written 

(6') 

where 

I/Ik(r) = (V)1/2 exp(2in ke r). (7) 

The functions l/!k(r) form a complete orthonormal set 
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(CON) for £2 (V), because, as k takes on the values given 
in Sec. I, 

(8) 

Hence the series (6') actually defines a good function 
y (r - r') because of conditions (3). The set of all kets 
In ({r.}» uniquely generates by integration the Fock 
space) as shown in Appendix A. By this we mean that 
any v~ctor of the Fock space can be expressed by in­
tegrating the In ({ r.}» vectors. The integration coeffi-. ) 
cients are umque. 

Diagonal Expression for the density matrix in terms 
of the wavepackets 

In Ref. 2, Glauber looks for a diagonal expression for p, 
on the generating system of the wavepackets 

00 n dr. 
p= 6 J n Fn({rj}) In ({rj}»(n({rj})/ n _J .(9) 

n~O v j ~1 V 

Such a diagonal form of p is of great interest because it 
can be understood in terms of probabilities: If condition 
H 1 is fulfilled, (n ! / vn) Fn ({ rj }) is the "emission" epd in 
it. = - Ie 1-1 I r. I}, i.e., the probability density that any 
w~vepacket willJbe "emitted" in tv any other in t 2 , ••• , 

any other in tn' and that none other will be "emitted." 
In a general way, if Condition H 1 is not fulfilled, the quan­
tity (n ! / vn) Fn ({ r· }) is the epd that defines the "emis­
sion process" co~stituted by points rj . 

After having given the principle of his demonstration 
[Which is equating expressions (2) and (9)], Glauber ob­
tains the following results: 2 

Fn({rj}) = c"Wn({r), 
with 

c" = (zn/n!) n (1 + (n k »)-1 
and k 

Z If(k)12 = (n k )/(1 + (n k ». 
From (3) and (12), it follows that 

6 (n k )/(1 + (n k » < 00, 6 (n k ) < 00. 
k k 

Moreover, 

z = 6 (n k )/(1 + (n k ». 
k 

(10) 

(11) 

(12) 

(3') 

As the kets In ({ r.}» is a uniquely generating system 
of the Fock spaceJ(cf.Appendix A), we know that this is 
the only solution. A demonstration of Eqs. (10)-(12) is 
given in Appendix B. 

Thus the photon chaotic density matrix p is 

p = is zn n (1 + (nk)t1 
n~O n! vn k 

Exclusive probability densities of the "emission process" 

From the results (10)-(12) of Glauber, we immediately 
deduce that the emission epd G ~ ({ r j}) is given by 

GJ'({r.}) = n!Fn({rj}) 
J vn 

z 
- y(r

J
. - ra ), 

V j 
(14) 
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or, from Eqs. (6') and (12), by 

G%({r) 

=f1(1+(nk>t1:0Pan:0 (n l ) l/Il(rj)l/It(r aj ). 
k j"1 I 1 + (n I> 

(15) 
With Eq. (15) we have totally settled the statistical laws 
of the "emission process" of chaotic photons. It should 
be observed that G %({ r j } ) depends only on the differences 
(rj - raj ); thus the "emission process" is spatially sta-
tionary inside volume V. 

B. Relation between exclusive probability densities 
and coincidence probability densities 

Relation between epd and cpd for a certain type of 
compound poisson process 

Let us consider a spatial compound Poisson process9 

whose events are denoted by {Xj}' By definition, a pp is 
a compound Poisson process if its cpd are the various 
moments of a nonnegative stochastic function p(x), called 
density. 

If we assume that p(x) is the square modulus of a sto­
chastic, zero-mean, Gaussian complex signal X(x),10 
which in addition is assumed to be analytic, that is 

(X(X)X(X'»= 0 for allx,x', 

then the cpd are 

Pn({xj }) = L; Pa j~l C(XpXa), (16) 

where C(x,x') is the covariance of X(x). Such a pp will 
be denoted by Compound Poisson process of type C, 
standing for its chaotic character.ll Equation (16) can 
be proved very easily. Indeed 

where, as X(x) is a complex Gaussian function, the 2n 
variables are jointly Gaussian. Hence we can use the 
well-known formula for the moments of Gaussian vari­
ables Z1"" ,Z2n' 

(Z1 ... Z2n) = :0 (Za Z/l ) ••• (Za Z/l ), (17) 
all lIn n 

where :0all indicates a sum over all possible couplings 
of Z1> .•• , Z2n' Because X(x) is an analytic signal, for­
mula (17) applied to Eq. (16') gives nonzero terms only 
if X(x i ) is coupled to X*(x): Thus we obtain Eq. (16). 

It has been shown by Macchi12 that, for such a process, 
the epd are given by 

where 

g(X,u) = Z; fAzI(l + Az)]cpz(x)cpr(u). (19) 
I 

Index 1 scans the whole set of positive integers. Quanti­
ties Az and functions cp 1 (x) are, respectively, the eigen­
values and eigenfunctions of C(x, x'), that is to say, they 
verify the following equation 
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Moreover the fUnctions cp I (x) are chosen so as to form 
an orthonormal basis of £2(V), as is pOSSible, if the 
covariance C(x, x') is continuous.13 

It should be recalled that, as shown in Sec. I, the whole 
set of epd defines completely the stochastic law of any 
point process and that it has been shown by Macchi6 

that the whole set of cpd defines completely the stochas­
tic law of the process as well. Thus, what Macchi has 
shown in Ref. 4 is that the two definitions (16) and (IS) 
are equivalent for a compound POisson process of type 
(C). 

Application of the foregoing results to the 
"emission" process 

• We now compare Eq. (15) and Eqs. (IS) and (19). Let us 
call g(r - r') the function 

Z (n 
- y (r - r') = L; l/I,,(r) l/I,,*(r'), 
V k 1 + (nk ) 

which appears in Eq. (15). Since the set of functions 
l/Ik(r) is a cON,L;k(nk)!{l + (nk» is finite, and (nk)! 
(1 + < nk» is positive, this function g(r - r') is a covari­
ance. We can associate to g(r r') another covariance 
C(r - r') in the same way as done in Eqs. (19) and (20): 

C(r- r') =:0 (n k) l/Ik(r) l/IZ (r'), (21) 
k 

which is actually a covariance because the (n k) are 
positive and of finite sum. 

According to Eqs. (IS)-(20), the compound Poisson pro­
cess of type C associated with the covariance given in 
Eq. (21) has for epd, 

'" n '" (n k> * XLJPa f1 LJ l/Ik(r)l/Ik(ra) , 
j=l k 1 + (n,,) J 

which is identical to the "emission" process epd given 
by Eq. (15). Hence the "emission" process is a com­
pound Poisson process of type C associated with the 
covariance given in Eq. (21),'and, in particular, its cpd 
are given by Eq. (16): 

Pn{{r.}) = L; Pa ~ !. L; (n ,,> exp[2iwk-(rj - ra)]' 
J }=1 V k J 

(22) 

According to the Kahrunen-Loeve theorem14 the stocha­
stic function X(r), the covariance of which is C(r - r'), 
given by Eq. (21), admits the following expansion 

X(r) = (Vt1/ 2 :0 IY.k exp(2iwko r), 
k 

(23) 

where ak is a Gaussian, zero-mean, stochastic variable, 
the second order moments of which are 

(aka:,) = (I IY.k 12) 0kk' = (n,,) 0UI, 

(ak IY.k*,) = 0 for all k and k'. 
(24) 

(For k "" k' the stochastiC variables a k and ak" are in­
dependent.) 

Let us compare X(r) with the positive frequency part 
B(r) of the function associated, in the coherent state rep­
resentation, with the electric field operator, at time 
.t = O,E(r, 0). We have7 
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E(r,O) = (vt1/ 2 6 (~nwk)1/2 
k 

x [ak exp(2inkor) - a~ exp(- 2inkor)), (25) 

where w
k 

is the angular frequency of mode k, and 

8(r) = (V)-1/2 6 (~nwk)1/2 ak exp(2inkor). (26) 
k 

As the field we are conSidering is a chaotic one, 8(r) is 
Gaussian and so are the various ak , which, moreover, 
satisfy Eq. (24). From Eqs. (23) and (26), it follows that 
X(r) and 8 (r) differ only by the factors ~ n Wk' In the op­
tical frequency region, the spectral bandwidth of the 
field DoW

O 
is always much smaller than the mean fre­

quency Wo of the field, which allows us to write 

(27) 

This shows, in particular, that the function C(r - r') 
appearing in the cpd [Eq. (22)] of the "emission" process, 
is 2 V In Wo times the covariance of the analytic electro­
magnetic field. 

On the other hand, the function g(r - r') appearing in the 
epd [Eq. (15)] of the "emission" process can be con­
sidered as the covariance of the wavepackets. In fact, if 
we rewrite the wavepacket A+(rj ) I 0) in the r represen­
tation 

<l>(r - r) = 6 f(k)(VP/2 exp[2inko(r - r)], 
k 

Eq. (6) can be expressed in the following way: 

y(rj - r",) = iv <l>*(r- r)<l>(r- r",)dr 
) ) 

= Jv<l>*(r",-r)<l>(rj-r)dr= (<l>*(r",)<l>(r)V. 
) ) 

Thus,g(r- r') is equal to Z(<l>*(r )<l>(r.). 
"'j ) 

The chaotic detection and "emission" processes 
are identical 

Let us now consider another pp which is the detection 
process, in the ideal case defined in Refs. 1 and 
7. It is the pp consisting of the detection points 
of photons obtained with detectors of quantum effi­
ciency one and very well localized in time and space. 
(Their dimensions in time and space are very small 
compared with the coherence time of the field Tc = Dowol, 
and the coherence length l = C'[ c), It is well known that, 
under such conditions, the detection cpd are given by 
Eq. (22).11 From this, it follows that the detection epd 
are given by Eq. (15), and that the "emission process" 
and the ideal detection process are identical. This 
means that,for chaotic fields, the bunching effect ob­
served by detection is already present in the "emission". 

It is possible to check up on this identity between the 
two pp, without using the well-known results concerning 
the ideal detection process. In fact we can obtain the 
detection epd and cpd directly by letting the coincidence 
operator1 ,15 act on the density matrix given by Eq. (9). 
The virtue of such a calculation, given in Sec. TIIC, re­
sides in the fact that a similar one must be performed 
to obtain the detection epd for fermions. Indeed the 
fermion epd are not yet known except for weak densi­
ties.! 
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The coincidence operator will be acting on the chaotic 
density matrix P given by Eq. (13): 

00 Zn 
P = n (1 + (n k )t1 6 --

k n~O n! vn 
n n 

X ivn lo)n A(rj)A+(r)(OI n drj • (13) 
) ~1 )~1 

Now the coincidence operator (ll n ({aj}), which is defined 
in such a way that 

(28) 

is given by 
n 

(ll n({a
j
}) = n (l (+) (aj ) (l(aj ) , 

)~1 

(29) 

where the operator (l (+) (aj ) is 

(l(+)(a) = (Vt 1/ 2 6 a~ exp(2inkoaj ). 
) k 

Let us next imagine a measurement that would put the 
system in a state such that one photon is in each one of 
the n volumes {aj, daj} and no other photon is in volume 
V. The probability of this measurement being realized 
is the detection exclusive probability G %({ aj} )Dj ~1 daj . 

Let N. (N) be the numbers of particles in {aj' daj} (V). 
Then: according to the Bayes rule, 

G if ({ a j }) j01 
daj 

=Pr[(N1 =1,N 2 =1, ... , Nn =l)/(N=n)]Pn, (30) 

where Pn = Pr[N = n]. The a posteriori probability 
Pr[(N 1 = 1, ... ,Nn = l)/(N = n)] may be considered as 
a coincidence probability, measured for the system in a 
n particle state. 

If we call Pn the nth matrix coefficient of the density 
matrix P given by Eq. (13), 

zn n n 
Pn = -- n (1 + (nk )t1 J n 10) n A(r)A+(rj)(O In drj , 

n! vn k v j~l j~l 

(31) 

then Pn '(TrP n t 1 is the denSity matrix of the system in 
an n particle state. By applying Eq. (28) to such a sys­
tem, we obtain 

_ )/( _ )] _ Trpn(lln({aj }) n 
Pr[(N 1 = 1, ... ,Nfl - 1 N - n - n dar 

TrP
n 

)=1 

(32) 
Since TrP n =p",we conclude from Eqs.(30) and (32) 
that 

c,;'({aj })= TrP n (lln({a)). (33) 

Thus from Eqs. (29), (31) and (33), it follows that 

GJ({aj }) = n (1 + (nk»)-l 6 P'" ri ~ y(a. - a",), (34) 
k j~l V 1 ) 

which, according to Ref. 4, is equivalent to 
n 

Pn({aj }) = 6 P'" n C(aj - aa)' (35) 
j~l ) 

With Eq. (35) we once again obtain the well-known detec­
tion cpd for a chaotic field and we show directly that 
with an "emission" epd of the form (14) in the density 
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matrix p, we obtain an identical detection epd [given by 
Eq. (34)]. 

IV. FERMION CASE 

A. Expressing the "chaotic" density matrix in terms 
of wavepackets 

rollowing Glauber,2 we define a fermion "chaotic state" 
by the density matrix p, 

p = TI Pk' 
with k 

Pk= (1- (nk » 10)(0 I + (nil) I k)(k I. (36) 

The ket Ik) describes a one-fermion state in mode k. 
The mean number of fermions in mode k,(n k ), verifies 
the relation (n k ) < 1. 

As he has already done for the photons, Glauber looks, in 
Ref. 2, for a diagonal expression of p on the uniquely 
generating system of the wavepackets I n{{rj }», 

P= ~ J Fn{{rJ) In{{rj}»(n{{rj })I Ii drj (9) 
,,00 vn )01 V 

Construction of the wavepackets In( J rj!) 

The normalized wavepacket I n ({ rj }» is given by 
n 

In({r.}»=[w,,{{rj }W1l2 TI A+{r) I 0). (4) 
J j 01 

The operator A+{r) is 

A+(r.) = 2:; f{k) exp{- 2i7Tk·rj )aj, 10), 
J k 

where ai,{a k ) is now the fermion creation (annihilation) 
operator in mode k and verifies 

The ket A + (rj) 10) describes a one-fermion wavepacket 
with spectral density If (k) 12 , "emitted" at point rj . 
Function If (k) 12 is normalized according to Eq. (3). In 
a way similar to that for photons, we have 

y(r - r') = (O I A{r)A+(r') 10) 

= 2:; I f(k) 12 exp[2i7Tk· (r - r')], (6) 
k 

or also in terms of the lJik(r) [Eq. (7)], 

y(r - r') = 2:; If(k) 12 VlJik(r) lJik*(r'). (6') 
k 

The ket I n({ r.}» describes, in the Heisenberg picture, a 
set of n one-f~rmion wavepackets in the neighborhood of 
pOints r 1 , ••• , rn' As we did for photons, we call "emis­
sion process" the pp consisting of points rj (even though 
no physical meaning can be given to the time instants tj 
defined by rj = - ct j ). As shown in Appendix A, the kets 
In ({ r j } » uniquely generates the Fock space. 

Diagonal expression for the density matrix on the 
wavepacket basis 

By identifying Eqs. (9) and (36), we obtain with Glauber 
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a possible solution for functions Fn ({ rj}) (a demonstra­
tion of which is given in Appendix C), which is 

Fn({rj}) = en Wn({rj}) 

with 

and 

From Eqs. (3) and (39) it follows that 

(10) 

(38) 

(39) 

2:; (nk )/(I- (nk » < 00, 2:; (nk ) < 00, (3") 
k k 

and 

(40) 

Based on Appendix A, we can state that this is the only 
solution. Thus the fermion chaotic density matrix P is 

00 

P= 2:; 
noD n! vn 

Zn 

Exclusive probability densities of the "emission process" 

As already established for photons\ the "emission" epd 
C %({ r.}) is equal to (n !/vn) Fn ({ rjl)' Thus we obtain 
the ch~otic fermion "emission process", which is given 
by its epd C%({rj}), 

Z 
- y(rj - raJ, 
V J (42) 

or, from Eqs. (6') and (39), 

B. Relation between exclusive probability densities and 
coincidence probability densities 

Let C(r, r') be a covariance function whose eigenvalues 
and eigenfunctions are, respectively, Al and CPI on vol­
ume V: They are solutions to equation 

AICPI(r) = Jv C(r,r') CPI (r') dr', rE V, (20) 

and furthermore, they can be selected to form a CON of 
£2(V). 

We show that if a pp is defined by its cpd (pp of type C) 
n 

Pn({rj }) = 6 Pa(E) n C(rj,r u )' 
j01 J 

(43) 

its epd are 
00 n 

C,r({r.}) = n (1 + EAlt' 6 Pa(E) I! g(rj,r a ), (44) 
J 10 1 J -1 J 

where E = ± 1 according to the pp and where g(r, r') is 
defined as the root of the integral equation 

g(r, r') + E J v g(r, r") C(r", r') dr" = C(r, r'), (45) 
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or, equivalently, as the sum of the series 
co A 

g(r,r') = L) __ I - CPI(r)CPt (r'). (46) 
1~1 1 + EAI 

The case E = + 1 is the photon case, and has been dealt 
with in detail in Sec. III. 

The proof of the case E = - 1 is given in Appendix D. 

Then in order that Pn ({ r j }) and G~({ r j }) actually be 
probability densities, it is necessary and sufficient that 

o '" Al < 1 for all 1. (Condition F) 

Application of the foregoing results to the fermion 
"emission" process 

Let us compare Eq. (42) with Eqs. (44) and (46). We call 
g(r - r') the function 

(Z/V)y(r - r') = L) (n k)/(1- (nk»)lh(r) If.t;(r') , 
k 

appearing in Eq. (42). As the set of functions If.tk (r) con­
stitutes a CON and (n k ) is positive, we can associate 
with g(r - r') a covariance function C(r - r'), as done 
in Eq. (46), 

C(r- r') = L) (nk)lf.tk(r)If.t;(r'). (21) 
k 

As L)k (n k ) < 00, this covariance actually exists and is 
identical to the one given in the photon case. 

Let us also notice that the (n k ) fulfill condition F. 
Hence we may apply the preceding results of Sec. IYB. 
In other words, type C pp, whose cpd are 

has its epd given by 
n 

G~({rj})=n (l-(nk»)L)Pa(-l) [I 
k J-1 

X L) (nz> exp[2i7Tlo (rj - r a.)]' 
I l-(nl ) J 

which are identical to the "emission" process epd given 
by Eq. (42). Hence the "emission" process can be de­
fined as well by its cpd given in Eq. (47). 

C. Fermion detection process 

The coincidence operator <Pn ({ aj } 1 is formally given by 
Eq. (29); but operator a~(ak) is now the fermion creation 
(annihilation) operator in mode k defined earlier. The 
coincidence operator is defined1 such that 

(28) 

As we have done for photons, we now consider a fictive 
measurement giving the detection epd. Thus we can 
write 

(33) 

where, from Eq. (41), 
Zn n n 

Pn = n (1-(n k»)--j 10) n A(rj)A+(rj)(Oln drj • 
k n! vn vn j=l j=1 

(48) 

From these two equations and from Eq. (29), we conclude 
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that the detection epd is given by 
n 

G';({a.}) = n (1-(n k»)L)Pa(-1) n (Z/V)y(aj-aa)' 
J k j =1 J 

(49) 

where y(a
j 

- aa) is given by Eq. (6) or (6'). 
J 

Since we know that the two definitions of a pp by its epd 
and its cpd are equivalent,4 and more precisely, that 
Eqs. (43) and (44) are equivalent, we can define the fer­
mion detection process by its cpd, which might be ac­
tually measured: 

n 

P ({a.}) = L) P a (- 1) n C(aJ. - aa}' 
n J j=1 J 

(50) 

Therefore we have established with Eq. (50), the cpd of 
the ideal detection process of "chaotic" fermions. Such 
quantities were not known beforehand, with the exception 
of the case of an incoherent and weak fermion beam 
(see Ref. 1).16 It need be emphasized that Eqs. (47) and 
(50) assert that for chaotic fermions as well as for 
chaotic photons, the "emission process" and the ideal 
detection process are identical. 

It should also be noted that in the fermion case, as in 
the photon case,g(r - r') is the wave packet covariance. 
The physical meaning of the stochastic quantity which 
can be associated with the "field covariance" C(r - r') 
in the fermion case is discussed elsewhere.16 

V. CONCLUSION 

Starting from the results of Glauber, we have defined an 
"emission" process for chaotic bosons or fermions and 
computed the detection process of such particles. 

For bosons and fermions, respectively, these two pro­
cesses have been shown to be identical. It has also been 
pointed out how, in both cases, epd are related only to 
the wave packet covariance and cpd only to the "field 
covariance." 

Moreover, the description of the statistics of chaotic 
fermions and bosons in terms of the cpd sets forth the 
symmetry between the two types of particles, as can be 
seen by comparing Eqs. (35) and (50). 

Finally, we stress that the identity between "emission" 
and detection processes, in the photon as well as in the 
fermion case, has a physical interpretation, namely that 
the bunching (or antibunching) effect!· 11 observed by 
detection in the chaotic case is already present in the 
emission process. 
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APPENDIX A 

The purpose of this appendix is to demonstrate that the 
set of vectors 

n 

In({rj })) = OV,,[{rj }]J-l/2 n A+(rj)IO) 
J~l 

(4) 

is a uniquely generating system (ugs) of the Fock space. 

To do so, we first recall how a basis can be built in the 
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Fock space only making use of a basis in the one-parti­
cle state space H. Then, by applying the Wiener-Tau­
berian theorem, we prove that any vector of the Fock 
space is expressed in a unique way in terms of the vec­
tors In({rj}). 

Construction of a basis on the Fock space 

Let JC be the Hilbert space which is the state space of a 
particle. Its basis consists of vectors II/Ii ). The vec­
tors of the basis of the dual JC * of JC are written (UJ71. 
With the vector Ix) belonging to JC, the linear form 
(\!/ I x) is written 1/1 (x). 

Let us now consider the Hilbert space JC® n which is the 
tensorial product JC®JCISI ... ®JC .17 Its corresponding 
~ 

basis consists of vectors18 

II/Iti)) = 11/1 i ) ® II/Ii ) lSI ... ® II/Ii ). 
1 2 n 

The vectors of the basis of the dual (JC*)®n of JClSln are 
written (VJ{~) I . 

If Ix,l'x2, ... ,xn ) = Ix1) lSI Ix2) ® ... ® I xn ), the form 
(l/Ifil1x1'X2, ... ,xn) is given by 

I/I(X1,x2, .. ·,xn ) = I/Ii (X1)l/Ii (x2)···l/Ii (x n )· 
1 2 n 

We define19 the Hilbert space SJCGSn(AJC16n) where 

S = 1..- 6 P a, A = 1..- 6 P a (~ 1) aa • 
n! a an! 

The operator aa' on JC®n is defined as 

(1/I{;)laalx1,X2,,,,,Xn) =I/I i (X1)VJ i (x2)···I/1· (x), 
etl 0:

2 
ZCXn n 

where {Ql1' ... , Qln} is a permutation of {l, 2, ... , n}. 
So we have 

(I/Itil I S(A) Ix) = (I/I{~) I 6 P a (E) a a I X) 
n 

= 6 Pa (E) f1 I/I i (x). (Al) 
J =1 a j 

The set of all functions S II/I{~))(A II/I{i)) is a basis of 
SJC®n(AJCGSn).20 

The space to which the vectors I{nk}), I {Qlk})' and 
I n«{r)) belong is the Fock space F 1 if we consider 
bosons and is F 2 if we consider fermions 

+00 +00 

F1 = Ell SJC®n, F2 = Ell AJC®n, 
ncO ncO 

where the symbol Ell means a tensorial sum. By defini­
tion, the space H®o is the set of complex numbers. A 
basis of F 1(F2 ) is the set of all vectors S litI{i})(A II/I{i}» 
for all n. The basis of vectors I {n k}) is built in this 
way, but the basis of vectors I {Qlk}) is not. 

Let us show that In ({ r j }) can be written in a quite 
similar manner. Setting 

we know21 that the creation and annihilation operator 
A+ (rj),A(r) in state 1<1» satisfy the relations 

[A+(rj)A(r i )]± = (<1>j I <1>i) 

and [A(rj)A(ri)L = [A+ (rj)A+ (r i )] = 0, 'Vi' 'Vj • 

Then, according to Ref. 21, it can easily be shown that 
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jf11 A+(rj ) 10) = S(A) I <l>{j)' 

where 

I <1>{j}) = I <1>j1) ® I <1>j2) ® ... ® I <1>jn)' 

Thus, according to Eq. (4), vector I n( {rj }) can be 
written as 
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I n({r))) = (n !/Wn[{r) ])1/4 S(A) I <1>{j})' (A2) 

By using Eq. (Al) in conjunction with Eq. (A2) it can be 
shown that 

n 

X 6 Pcx(E) IT <1>i (x.) 
j=l CXj J 

= (Tv,,[{rj }])-1/26 P cx (E) fi <1>(xj~ra)' (A3) 
j = 1 J 

Expressing any vector of the Fock space in terms of 
vector In!)qf)) 
Any state vector I X) of the Fock space is uniquely 
written in terms of the I n( {r.})), which is equivalent 
to showing, in the space SH®'/ (AH®n), for any nonnega­
tive n, that a vector I X) can be written in a unique way: 

I X) = I u(rl' r 2 , •• ·, rn) I n({rj } »dr1dr2 ••• drn • 
v n (A4) 

In this formula, V is arbitrary, I n ( { rj }» is given by 
Eqs. (4) or (A3), and it is assumed that the spectral co­
efficients !(k) of the wavepacket 1<1», 

1<1» = 6 !(k) a~ 10) 
k 

are all nonzero 

!(k) "" 0, 'Vk. (A5) 

Moreover, u(r l' r 2' ... ,r n) is (anti) symmetrical. 

Instead of proving formula (A4) for any vector I X), we 
can equivalently prove it for every vector 11/1;") of a 
basis of SH®n(AH®n). Moreover, property (A4) can be 
proved in the space Sffi9 n (AH*)®n. Thus we have to 
show that 

(1/I{~)IX1,X2,···,Xn) = Iv n u(r1 ,r2 ,···,rn ) 

x (n({rJ) I X1,X2, ... ,xn)dr1dr2·· ·drn (A6) 

for any vector I xl' X2, ... , x n ), where (Xl' ... , xn) is a 
point of vn. The two inner products appearing in Eq. 
(A6) are functions of £l(vn). According to formulae 
(Al) and (A3) and by choosing (I/Iip Iyp):= (Vt1/2 
exp2inkp"y , it is necessary to show that a unique sym­
metrical function u(r l' r 2' •.• , r n) exists which depends 
on k 1 , •.. , kn , such that 

(A7) 
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This is a straightforward consequence of the relation 

V -n/2 e2iukl'YI , .. e2i"kn'Yn - ( u(r r r ) 
-Jvn l'2""n 

From the Wiener-Tauberian theorem22 we know that 
Eq. (A8) holds for at most one function u(rl " .. , rn) in 
J3l(V n ) provided the Fourier coefficients f(k'l)'" f(k~) 
of the function cI>(r1)··· cI>(rn ) are all nonzero. This is 
satisfied given Eq. (A5). 

Moreover, the uniqueness of u(rl , ... , rJ can be shown 
as follows. Putting into Eq. (A8) the Fourier expansion 
of u(r1, r 2, ... , ra) Wn [ {rj } rl/2, 

u(r1, r 2, ... , rn) Wn [ {rj } ]-1/2 

and of cI>(Yl - r 1)··· cI>(Yn - rn), 

cI>(Yl - r 1)··· cI>(Y" - r,,) 

== 6 f(ll)" 'f(I,)V-n/2e2i7rll·(Yl-r1) . . 'e 2 i7rl n ·(y,,-rn), 

I·····Z 
1 n 

we get 

v-n / 2 e2irrk1'Yl ... e2inkn'Yn 

6 l(h,···, Uf(ll)'" f(ln) 
jl'·· ·,jft 

Zl .... •zn 

Since the set of functions V-n / 2 e2i7rll'Y1 ... e2irrln'Yn 
is a basis of £l(vn), we have to set 

t(ll' •.. , I,,} == 0 

if 11 '" k1, or 12 '" k2, ... or 1" '" k", 

l(k1 ,···,kn )== V-tZ/2[j(k1)···f(kn)]-1. 

(AIO) 

Thus u(r1, ... , rn) Wa [ {rJ ]-1/2 is unique, and of course 
u(r1 ,· .. , rn) is unique. 

APPENDIX B 

The chaotic density matrix P can be written in the form 
< ) n k 

P == PI == 6 n (nk »)1 I {nk}) ({nJ I (1) 
ink) k (1 + n k +"k 

on the basis of vectors I {Ilk} ) . 
We look for a diagonal expression P2 of P on the 
uniquely generating system of vectors In ({ r j }) , 

+00 

6J n F,,({rj }) In({rj})(n({rj})1 V-n ~ drj" 
ncO V jc1 

(9) 
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In order to obtain function Fn ({ rj}), assuming it exists, 
we identify ({nk } I PI I {ne}) and ({nk } I P2 I{nk,}) for 
any I {n k }) and I {n k ,}). 

From expression (4) for In({rj})),we deduce that 

In({r j })) == Wn [{rj }]-1/2 6 C~I(j1)f(kl)nl 
(nk}/L;nk=n 

x n exp(- 2ilTkl" r. ) '" 
jl 11 (BI) 

x c:.t:. n 1- ... - n1'-1 (j)f (kp ) np 

The symbol 6 {n }/Ln = n indicates a double summation. 
k k 

First, for a given set {k} == {k1, ... , k z, " ., k p}, P ~ n 
of different wave vectors, we have to sum over all 
different ordered sets of positive integers {nk } == 
nl,.·.,nz,··.,np,fulfillingthe equalityn 1 +n 2 + ... + 
n p == n. The integer n 1 is the number of photons in 
mode k l , ... , n p in mode k p • Secondly, we sum over all 
different sets {k}. 

The symbol C~z (j I) means that we take the sum over 
all possible sets of nz nonordered elements {jl} taken 
in the N indexes not yet chosen among 1, 2, ... , n. 

Let us introduce all modes k in every term of the sum­
mation 6{nk}/L nkcn; since 6nk == n, all modes k can be 

obviously accepted in the product n k vnk ! • Moreover, 
by introducing all the zero-particle modes (np == 0) for 
which there are cg == 1 terms and for which 
exp(- 2ilTkp " rjp is conventionally taken to be one, we 
may rewrite Eq. (BI) as 

In({rj })) x (Wn[{rj}])1/2 

X 6 n [c:~n _ .. , -n (jp)f(kp)np 
1 P-1 

(nk}/Lnk-n p=l 
(BI') 

x nc-2rrkp'rjpVilp! ]{n
k

}). 

jp 

The nondiagonal terms ({nk} I PI I {nkl}) with {nk} '" {nk,}) 
are zero. Thus, by using Eq. (BI'), the nondiagonal terms 
({n k } I P2 I {nkJ) fulfill 

iv Fn({rj}) n [C:!n -"'-n {j )f(k )"P 
n Wn[{r

j
}] p=l 1 P-1 P P 

x n exp(- 2ilTkp " rjp) vnp ! ] 
jp 

00 

x I1 
p=l 

C nj, ( . ')f(k )", 
" 
~n' - '" - ft' Jp p P 

1 • P-1 

(B2) 

where at least one element of the set {nk} == n1>n 2, ••• , 
np,'" differs from one element of the set {n~} == n1, 
1l 2, ... ,np,'" . There is an obvious solution of Eq. (B2) 
which is 

(B3) 
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Equation (B3) is identical to Eq. (10) of Sec. III. In order 
to evaluate en let us now consider the diagonal terms. 
The density matrix P2 must be such that 

( 
(nk) )nk 1 ({n k } I P2 I {nk }) = n 

k 1 + (nk ) 1 + (nk ) 
(B4) 

By computing ({nk } I P21 {nk }) from Eqs. (9) and (B1'), 
we obtain 

({n } I I {n }) = I Fn ({ r J) 
k P2 k Wn[{rj}] 

X fj C:!'n _ "'-n _ (jp) If(kp) 12nPnp! il drj/V", (B5) 
p lIP I j=1 

which gives, using Eq. (B3) and taking into account that 

Z If(k)12 =(nk)/(l + (ilk»)' 

en = (zn/n!) n (1 + (nk)-I. 
k 

(B7) 

(B8) 

Equations (B7) and (B8) are identical to Eqs. (12) and 
(11) of Sec. III, respectively. 

Thus, we have shown that the solution given by Eqs. (10)­
(12) in Sec. III is possible. Moreover, we know from 
Appendix A, that this solution is the only one possible. 

APPENDIX C 

The demonstration in this Appendix is very similar to 
that in Appendix B. 

Let us call I{k)) with 1 "" j "" n the vector describing 
the state where one fermion is in mode kl' ... ,one fer­
mion in mode kj' ... , and one fermion in mode k n • 

On the basis of vectors I{kj }) (n varying from 1 to in­
finity), the chaotic density matrix of the fermions, ex­
pressed by Eq. (36), takes the form 

n (n j ) 

P = PI = n (1 - (n k») 6 n I {kj } )( {kj } I . 
k {k

j
} j=1 1- (n) 

We look for an expression P2 of P on the uniquely 
generating system of vectors In ( {r j} », 

(C1) 

+00 n 
P2 = 6 Iv

lZ 
Fn({rj})ln({rj})(n({r)) I V-n n drj" 

n- 0 J = I 

(9) 

We obtain Fn({rj }) by identifying ({kj} I PI I {kj}) and 
({kJ I P2 I {kj}) for any I {k}) and I{kj}). From Eq. 
(4), we deduce the following dxpression for In ({ r j }» 
on the basis of the vectors I {kj }): 

In({rj})) = (Wn [{rJJl-I/2 6 
{k j } 

X f'r f(k j ) 6 Pa exp(2ilTkj o r a ) I {k)). (C2) 
j=1 J 

Thus, the nondiagonal terms ({kj } I P2 I {kj}) with 
{kj } 7' {kj} verify 
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An obvious solution of Eq. (C3) is 

Equation (C4) is identical to Eq. (10) of Sec. IV. 

The diagonal terms ({k.t} I P2 I {kj }) satisfy 

V-nn! 1, Fn({rj}) Ii If(k.)12 dr. 
Vn~[{rJ)j=1 J J 

n 

= n (1-(n k ) IT 
k j=1 

By setting 

we obtain 

en = (zn /n!) IT (1 - (nk »). 
k 
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(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

Equations (C7) and (C6) are identical to Eqs. (38) and 
(39) of Sec. IV, respectively. Thus the solution given by 
Eqs. (10), (38), and (39) is a possible solution. According 
to Appendix A, it is only one. 

APPENDIX 0 

It is shown in Ref. 13 that the probability distribution of 
a pp may be thoroughly stipulated either by the system 
of its cpd Pn [ {rj } ] or by that of its epd in all volumes 
U,C,n{rj }]. 

In particular, it is shown that for any pp, both systems 
are related by 

c~[ {rj }] 

= I; (- l)P J l' Pn+p (rl , ... , rn+p)drn + I '" drn +p ' 

P' v p=O • (01) 

Here we show that the cpd system 

(D2) 

and the epd system 
00 n 

c,n{rj }] = IT (1-A/)6 P a (-l) n g(rj,r a ) 
1=1 J =1 

(D3) 

define the same stochastic pp, provided that 

g(r, r') - Iv g(r, r") C(r", r') dr" = C(r, r'), (D4) 

the A / being the eigenvalues of the covariance C(r, r') in 
volume U. 

In order to prove this property, it suffices to show that 
Eq. (D2) and Eq. (Dl) imply Eqs. (D3) and (D4). If this is 
true, let CP 1 and CP 2 be the stochastic pp whose distribu­
tions are defined by Eqs. (D2) and (D3), respectively. 
According to Ref. 6, CP 1 then has epd following Eq. (D3). 
Thus CP 1 has the same distribution as CP 2' 

Proof of Eq. (03) 

We now proceed to prove Eq. (D3) from Eqs. (D1) and 
(D2). 
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This proof relies entirely on the covariance diagonaliza­
tion by means of a complete orthonormal set (CON) over 
the volume U for the class J'2(U) (of functions with finite 
energy). It is well known 13 that, for continuous covari­
ance C(r, r'), which we assume, a CON exists whose ele­
ments are eigenfunctions of C(r, r'), in other words 
solutions of Eq. (20). The diagonalization is 

co 

C(r,r')= :0 AI<Pz(r) <p7(r'), Al ",,0 (D5) 
1'1 

and the corresponding series is uniformly and absolutely 
convergent over U X U. 

More generally, regardless of any probability context, 
the proof of Eq. (D3) from Eqs. (Dl) and (D2) given here­
in, is valid provided the function C(r, r') of Eq. (D2) is 
known to be the sum of an absolutely convergent series 
:0[ At<pt(r):e.~(r'), where the various <pz(r) form a CON 
and where Lt I I Al I < OCI. Then necessarily 

At <pt(r) fv C(r, r') <PI (r') dr' ; 

but the eigenvalues A I are not necessarily positive. 

By means of Eq. (D5), it is shown below that with Eq. (D2), 

fu p Pn +p (rv '" ,rn +p )drn +1 ••• drn +p 

= :0 A I ••• A I <Pz (r 1) ••• <PI (r n) 
11' "', In 1 n 1 " 

x:0Pa(-I)<p/ (r1 )···<pz (rn ) 
(Xl an 

(DS) 

where the symbol :0 (lv ... , In) indicates a summation 
over all distinct integers InTI' ••• , In+p all of which dif­
fer from II' ... , In' 

In order to shorten these equations, let us set 

Introducing Eqs. (DS) and (D7) into Eq. (Dl) one arrives 
at 

co ( )1-' 
G~[ {rj}J = :0 ~ 

p~o p! 

x:0 f n ({rj },{ln}):0(l1> ... ,ln )A 1 '''A I • 
I I ,,+1 n+p 
1"'" n (DS) 

Thus, by exchanging the order of the first two summa­
tions, one gets 

This procedure is legitimate if the (n + I)-fold series 
of the absolute values, say Q, 

! fn ({ rj }, {Ij } ) I \ 
p. 

x:0(ll, ... ,ln)A z "'AI , (DI0) 
n+l n+p 
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is convergent. It is known23 that the summation order 
does not matter for a positive series. Summing Eq. 
(DIO) first with respect to p, we realize that 

00 1 
:0 :0 (lv ... J,.)A I "'AI 
p~O p! ,,+1 fl+P 

co 
::;; n (1 + A)":: n (1 + Aj ). (Dll) 

i"1 1 , ... ,I" j~1 

The last infinite product converges because13 

:0 A. f C(r, r) dr < <Xl, 
j ] U 

(DI2) 

in turn coming from the covariance continuity. 

Then, summing Eq. (DIO) with respect to II' ... ,1", and 
taking definition (D7) into account, one obtains 

co 

Q,,:: n (l+A):0Pa 
j=1 

00 n 

Q,,:: n (l+A):0Pa n <:0AI!<PZ(rj)<Pt(ra.)!). 
j~1 j=1 I J (D13) 

From Eq. (D12) and the absolute convergence of expres­
sion (D5), one deduces that Q is bounded. This estab­
lishes the validity of Eq. (D9). 

NOW, just as for expression (Dll), it should be noted that 

00 " (l-Azl,= n (1 Az) n (I-AI >-1. (Dl4) 
k=l k Z= 1 

Introducing Eqs. (D7) and (Dl4) into Eq. (D9), we get 

Cr~[{rj} J 
At ... Az 

1 n 

(l-Az)"'(l-A z ) 
1 n 

x<pz (r1)"'<P1 (rn ):0Pa(-I)<P/(r",)· .. <Pt(ra ) 
1 nIl n n 

= n (I-A Z):0Pa (-l) n:0 _1_ <P 1 (rj )<p7(r a ). 00 n( A ) 
Z=1 j=1 I I Az j 

(Dl5) 
Next, we suppose that no Az is one. So it can easily be 
seen that the root g(r, r') of Eq. (D4) admits the follow­
ing Mercer expansion, similar to expansion (D5), and 
converges absolutely and uniformly over U XU: 

g(r,r')::;; :0 [A I /(I- AI)] <p/(r) <p;(r'). (DIS) 
I 

Now the result claimed in Eq. (D3) directly derives from 
Eqs. (DI5) and (DlS). 

In order to complete the proof, we must justify Eq. (D6). 

Introducing expansion (D5) into the expression (D2) of 
the cpd and integrating over UP, we see that 

fup Pn +p[ {rj } ]drn+l '" drn+p = fup ~ Po. (- 1) 

x :0 Al "'A I <PI (r1)· .. <PI (r,.+p) 
11, ... ,ln+P 1 n+p 1 n+p 

(D17) 
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Notice that 

cp7
1 

(r l ), CPt (r2), 
1 

... , CPt (r n +p) 
1 

CPt (r l ), 
2 

CPt (r2), 
2 

... , CPI (rn +p ) 
2 (D18) ... , 

CPt (r l ), CPt (r2), ... , CPt (rn +p ) n+p n+p n+p 

So if two Ii are equal, this determinant has two identical 
rows, and thus is zero. Therefore, in Eq. (DI7), we may 
restrict the series to the sets of distinct Iv • •• , In+p. 

Next we show that term by term integration is allowed 
in Eq. (DI7); for any fixed permutation 011' ... , a n +p , the 
series 6 1 '" ... "'I of the integrated modulus is bounded 
over by 1 n+p 

because of the Schwarz inequality 

f v I CPI (r n + k) CPt (r n + k) I dr n+ k 
n+k <Xn+k 

~ (fv I CPI (r) 12 dr fv I CPI (r) 12 dr)1/2 
n + k CXn+k 

and because all CPI (r) are normalized. Now it appears 
that the series in Eq. (D19) can be summed separately 
in all its arguments 11' •.• , In+p. It then becomes the 
product of (n + p) factors some of which are of the form 

a == L; A I I CPI (r i) CPt (r. ) I 
I J 

and others of the form 

b = L; Al I CPI (r k) I. 
I 

Expansion a is convergent since expansion (D5) is abso­
lutely convergent. Expansion b converges because the 
CPI (r) are a CON and because of Eq. (DI2). Hence R is 
bounded above. The term by term integration of expres­
sion (DI7) then gives 

fu p Pn +p [{rj } Jdrn +1 ••• drn+p 

L; Al ••• Al CPI (rl )··· CPI (rn) 
11"'" '''In+P 1 n+p 1 n 

X L; P a (-I)cpt (r l )··· CPt (rn) 
p a1 an 

X IT fv CPI + (rn+k ) CPt (rn +k) drn +k • 
k=l n k an+k 

(D20) 

Suppose that some n + k exists such that a n + k '" n + k, 
then la '" In+k' since the 1; are distinct. Thus, with 

n+k 

the CON CPI (r) 

fuCPI (r)cpt (r)dr==O. 
n+k CXn+k 

Therefore in the summation 6 P a (- 1), we only have to 
consider the part 6 P:;(- 1) of the permutations 
av" •• ,an,n + 1, ... ,n + p that leave (n + 1), ... , 
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(n + p) unchanged. And for these, integration always 
gives one. The point now is that 011' ... ' an is a permu­
tation of 1, •.• ,n, and that is why Eq. (D20) becomes 

fv p Pn+p [{r) Jdrn + l ·•• drn+p 

6 AI··· Al CPI (r1)··· CPI (r ) 
l ~ ••• "t.l 1 n+p 1 n n 
1 n;p 

(D21) 

X L; P a (- 1) CPt (r a ) ••• CPt (r a ) • 
lIn n 

Now it is enough to observe, as for expression (D18), 
that the condition of distinct ll' ... , In does not actually 
change the value of the series, since it only eliminates 
null terms. Then Eq. (D21) provides result (D6) pre­
viously stated, and thus achieves the proof of Eq. (D3). 

Probability meaning 

We now turn to the probability meaning of these equa­
tions. 

The system of functions Pn [ {rj} J expressed in Eq. (D2) 
may be viewed as probability densities of a pp only if 
two obvious conditions are fulfilled. 

Now expression (D2) is equivalent to 

C(rl , r 1 ), ... , C(rVrn) 
C(r2, r 1 ), ... , C(r2, rn) 

Pn [ {rj } J == (D23) 

C(rn,r l ), ... , C(rn , rn) 

In Ref. 24, it is shown that for such Pn [ { rj } J, condition 
(D22) is fulfilled if and only if 

C(r, r') is nonnegative definite. (D24) 

Such is the case in our paper because C(r, r') is defined 
either as the covariance function of a stochastic process, 
or as the sum of an expansion of the kind (D5), with a 
CON of functions CPI (r) and nonnegative coefficients AI' 

Al ~ 0 "Il, "IU. (D25) 

Condition 2: The system of functions G .f[{ r j } J that 
derive from Pn[{rJ J through relation (Dl) actually rep­
resents exclusive probability densities only if 

(D26) 

or, in our case where G.f[{ r j } J is given by Eq. (D3), if 

g(r1 , r 1), ... , g(r1 , rn) 
00 g(r2 , r 1 ), g(r2 ,rn ) 
IT (1- AI) 

... , 
~ 0, 

1=1 
g(rn , r l ), .. -, g(r",r,,) 

"In,r l ···rn1 , "IU. (D27) 

Condition (D27) implies that the n-order determinant 
built on g(r, r') is of constant sign. Therefore g(r, r') 
is either nonnegative definite or nonpositive definite. 
According to expansion (DI6), and taking Eq. (D25) into 
account, this is equivalent either to 

"11, Al ~ 1, g(r,r')nonnegative definite (D28) 
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or to 

V l, Al ~ 1, g(r, r') nonpositive definite. (D29) 

But hypothesis (D29) is not acceptable because the 
eigenvalues Al decrease towards zero [see Eq. (D12)]. 
Moreover remember that A I '" 1 appeared in the proof 
of relation (D3). Thus relations (D27) and (D25) can be 
grouped together into 

o ~ Al < 1, Vl, VU. (D30) 

Conversely it can be shown that if G,f[{rj }] derives 
from Pn [{ r.} ] by Eq. (D1), and if relations (D22) and 
(D26) hold, ihen there exists an actual pp whose distri­
bution is stipulated either by the system Pn [{ r j } ] or 
by that of G,f[{r)]. Therefore relation (D30) is a neces­
sary and sufficient condition for a probability interpre­
tation of Eqs. (D2) and (D3). 

Huang and Johnson25 demonstrated the intuitive proper­
ty of the eigenvalues that if the A I are numbered in de­
creasing order, then 

(D31) 

Now for the applications we have in mind, namely the 
distributions of the "emission" and the detection fer­
mion-point processes, the particles are enclosed in a 
fixed volume V. The function C(r, r') is defined over 
V x V by the expansion 

C(r, r') = L; (n
k

) e2illk'(r-r') / V, 
k 

(21) 

where the vectors k are chosen in such a way that the 
diverse e2ink'r form a CON over V. The number (n

k
) 

which is the mean number of fermions in mode k, is 
positive, Hence C(r, r') is positive definite over V x V, 
and thus relation (D25) holds for all volumes U C V, On 
the other hand, (n k ) is certainly less than one. With 
condition (D31), this shows that relation (D30) is valid 
inside volume V. 

Therefore the functions Pn [{ rj } ] expressed by Eq. (D2) 
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actually represent the cpd of a point process. For that 
pp the epd are given by Eqs. (D3) and (D4). 
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A spinor approach to the generalized singular electromagnetic field of Bel, Lapiedra, and Montserrat is 
presented. We include new proofs of the basis existence' theorems of the field theory using the method of 
spin coefficients, and interpretations of these theorems in terms of the optical scalars associated with a 
null geodesic congruence. We also exhibit general classes of solutions of the generalized singular 
electromagnetic field equations and classify them according to the optical properties of their associated 
null geodesic congruences. 

1. INTRODUCTION 

Let ~ be a four-dimensional differentiable manifold 
having a Riemannian metric gab of hyperbolic normal 
signature, and let r denote a congruence of curves in 
~ having null tangent vector la. 

A source-free singular electromagnetic field associated 
with r in the sense that the propagation vector of the 
field la is defined by a skew-symmetric tensor Fab such 
that 

(1. 1) 

(1. 2) 

(1. 3) 

In these equations, we have denoted the covariant deriva­
tive by Vb and dual tensors are constructed*using the 
Levi-Civita permutation tensor Eabcd ' e.g.,Fab = ~EabcdFcd. 

The existence theorems for this system are those of 
Mariot1 and Robinson,2 which state that there exist solu­
tions if and only if the associated null congruence r is 
geodesic and shear free. Bel, Lapiedra, and Montserrat3 

contend that it is essential for the proper consideration 
of reflection problems that one be able to associate 
electromagnetic radiation with a shearing geodesic con­
gruence, and they argue that a correct formulation of 
electromagnetic optics in general relativity must be 
phrased entirely in terms of singular electromagnetic 
fields. Such an analysis, together with a desire to gene­
ralize the theorem of Mariot and Robinson, led them to 
introduce the notion of a generalized singular electro­
magnetic field. 

A generalized singular electromagnetic field associated 
with the null congruence r is defined by a pair of skew­
symmetric tensors (Fab' Gab) such that 

VaGab = 0, 

* where Gab == ~Fab + T)Fab with ~ "" O. 

For breVity, we will refer to such a field as a BLM 
field and (1. 4)-(1. 6) as the BLM field equations. 

(1.4) 

(1. 5) 

(1. 6) 

The spinor and spin-coefficient formulations of the BLM 
theory is presented in Sec. 2 of this paper. In Sec. 3, we 
present a proof of the basic existence theorems for this 
field employing the spin-coefficient formalism, and we 
relate the conditions' of the theorems to the optical 
scalars associated with r and the Bel- Petrov type of 
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the Weyl tensor. In Sec. 4, we give a collection of gene­
ral classes of solutions of the BLM system which is 
classified in terms of the optical scalars associated with 
r. 
The spinor and spin-coefficient formalism of Newman 
and Penrose4 will be assumed known throughout our dis­
cussion, and we follow the Battelle Rencontres spinor 
notation of Penrose. 5 

2. THE SPINOR FORMULATION OF THE BLM 
SYSTEM 

The spinor formalism permits us to immediately trans­
late Eqs. (1. 5) and (1. 6) into the form 

VAA,GAA'BB' = 0, 

where 

GAA'BB' = ~FAA'BB' + T)*FAA'BB' 

and ~ "" O. 

(2.1) 

(2.2) 

(2.3) 

~y using the standard spinor expressions for Fab and 
Fab , we may rewrite (2.3) in terms of the symmetric 
spinor CPAB as 

(2.4) 

where 

l" DEF l" • 
'> = '> - IT) (2.5) 

and 
Re~ "" O. (2.6) 

Thus (2.1) and (2.2) may equivalently be written in the 
form 

(2.7) 

(2.8) 

Theovem 1: A BLM field associated with congruence 
r is determined by the complex functions {cp, n with 
Re ~ '" 0, such that 

and 

V"i,(CPOAOB) = - 2~e~ (cpOAOBV1i,~ + (j)0A,OB'VJj'O. (2.11) 

Proof: The set of equations (2.6)-(2.8) is equivalent 
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to the single spinor equation 

(2.12) 

where Re~ "" O. 

Clearly Eqs. (2. 7) and (2.8) imply (2. 12),for if we ex­
pand (2.8), we obtain 

(2.8') 

Thus, the proof of (2.11) merely involves the observation 
that the difference of the product of ~ and (2.7) and (2.8) 
is Eq. (2.12). Conversely Eq. (2.12) implies (2.7) and 
(2.8), since they are precisely the real and imaginary 
parts of (2.12). Equations (2.9) and (2.10) now follow 
since by virtue of (1.4) we may write CPAB = CPOAOB' 
where la corresponds to 0 i> A" 

Theorem 2: The spin coefficient formulation of the 
field equations reduces to 

K 0:= 0, 

Dcp = (p - 2E)cp + aep, 

ocp = (T - 2j3)cp + p, 

D~ 0:= - 2a;Pcp-1Re~, 

o~ 0:= - cp-l(pRe~ + iq), 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where p and q are real functions which depend on rand 
the initial conditions, and Re~ "" O. 

Proof: The spin coefficient resolution of Eq. (2.11) 
consists of the set of proj ections of this equation on the 
tetrad spinors oBOB', oBi: B', LBQB', and LEi: B'. If one ex­
pands Eq. (2.11) to 

CPOAOB'V~'~ + epOA,OB''V~'~ 

+ 2Re~(oAoB'V~'CP + CPOA'V~,OB + CPOB'V~,OA) = 0, 
(2.18) 

then the determination of the projections may be easily 
achieved through the following stages. 

First, multiplying (2.18) by OB, one obtains 

which may be expressed as 

- epoB,D~ + 2cpRe~' 0AOB{[(- KLB + EoB)LA 

+ (pLB - o!°B}OA]Ly, 

+ [(aLB - /30 B)L A + (yO A - TLA)OA]O B'} = o. 

This equation immediately reduces to 

Now, multiplying (2.21) by OB', we obtain 

K = 0, 

while multiplying (2.21) by "L B ' yields 

(fD~ + acp(~ + ~) 0:= O. 
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Similarly, multiplying Eq. (2.18) by LBOB', one obtains 

- cpD~ + (~ + ~) (- Dcp - cp LBDo B + cpOB''V~,o A) = O. 

(2.23) 
This equation can be reduced to 

- cpD~ + (~ + ~)[- Dcp + (p - 2E)cp] 0:= O. (2.24) 

Finally, multiplying (2.18) by LBO B', one obtains 

cpo~ + (jiBe- + [ocp + (2/3 - T)cp] (~ + ~) 0:= O. (2.25) 

Thus, the spin coefficient resolution of Eq. (2.10) is 
given by (2.13), (2. 22), (2. 24), and (2.25). 

We complete the proof by showing that these four equa­
tions are equivalent to the set (2.13)-(2.17). Equation 
(2.25) with the initial assumption that (~ + D "" 0, im­
plies that the combination ocp + (2/3 - T)cp is real. We 
can, therefore, introduce the real function p and split 
(2.25) into the equivalent pair (2.15), and 

Re(cpo~) = - pRe~. (2.26) 

Since Eq. (2. 26) imposes a condition on Re(cpo~) only, 
we can introduce the real function q and rewrite (2.26) 
as Eq. (2.17). 

In conclusion, if one now considers the pair (2.16) and 
(2.24), together with the initial assumption Re~ 7c 0, Eq. 
(2.14) immediately follows. Thus we have the previously 
stated equivalence. As a direct consequence of Eq. 
(2.22), we have: 

Corollary: The shear of the congruence r and the 
function ~ are related by 

- D~'D~ aa = . 
(~ + ~ )2 

(2.27) 

Equation (2.27) illustrates an interesting aspect of the 
BLM theorem. In particular if 1) 0:= 0 and we choose 
D 0:= alar, then (2.27) shows that 

~ = C exp(2j!a!dr), (2.28) 

where C is a constant. Solutions of the BLM equations 
corresponding to this possibility are indicated in Sec. 4 
under the cases I. 1. 1 and I. 1. 2. 

3. EXISTENCE OF SOLUTIONS TO THE BLM 
FIELD EQUATIONS 

The basic existence theorem for the BLM field is the 
following: 

Theorem 3: The BLM equations (2.13)-(2.17) admit 
a solution if and only if the associated congruence r is 
geodesic. 

Proof: The necessity is a direct consequence of Eq. 
(2.13). 

To establish the sufficiency we assume K = 0, and to 
prove that the remaining set of equations is integrable. 
Without loss of generality we may assume that our tet­
rad is parallelly propagated along r so that E = 1T = O. 
Equations (2.14) and (2.15) are then integrable if and 
only if 

(oD - Do)cp = (Ci + (3) Dcp - a5cp + pocp. (3.1) 
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It will therefore be sufficient to show that the commu­
tator constructed directly from the field equations 
assumes precisely the form 

(oD -Do)¢ = (a + (3)(p¢ + a¢) - a6¢ + p[(T - 2(3)¢ + p] 

for appropriately determined functions p. (3.2) 

From Eqs. (2.14) and (2.15), respectively, it follows that 
oD¢ and Do¢ are 

oD¢ = ¢op + p[(T - 2(3)¢ =p] + (fioa + ao(fi (3.3) 

and 

DO¢ = (DT - 2D(3)¢ + (T - 2(3)(p¢ + a¢) + Dp. (3.4) 

Hence 

(oD - Do)¢ = ¢op + ¢oa + pp - (DT - 2D(3)¢ 

- (T - 2(3)¢ - Dp. (3.5) 

This expression may be conveniently expanded using the 
following Newman-Penrose equations6 : 

op = [6a + p(a + (3) - a(3a-~) + (p - p)T- WI + ¢01]' 

- DT = - (Tp + Ta + WI + <POI)' 

2D(3 = 2(aa + p(3 + WI)' 

Hence the commutator constructed directly from the 
field equations is 

(oD - Do) = ¢6a + (ijoa + ¢[p(a + (3) - aa + a~ + 2p(3 

- Tp - Ta] + pp + ao(fi - (T - 2(3)a¢ - Dp. (3.6) 

Thus Eqs. (2.14) and (2.15) are integrable if 

(a + (3)(p¢ + a¢) - a'5¢ + p[(T - 2(3)¢ + p] - {¢5a + (fioa 

+ ¢[p(a + (3) - aa + a~ + 2p(3 - Tp] + pp + ao¢ 

-- (T - 2(3)acp - Dp} = O. (3.7) 

Equation (3.7) obviously simplifies to 

¢6a + (~ - a - T)a¢ + a6¢ + (fioa + «(3 - a - T)a¢ 

+ ao ¢ + (p + p) P - DP = O. (3. 8) 

Coordinates may be chosen so that D = a jar. Thus one 
may rewrite and integrate Eq. (3. 8) in the form 

p = 2/-1 J /Re[5(a¢) + (~ - a - r)a¢ ]dr, (3.9) 

where 

/ == exp(- 2 J Repdr). (3.10) 

Clearly the p given in Eq. (3. 9) is real, and hence (2.14) 
and (2.15) are integrable for this choice of p. 

Equations (2.16) and (2.17) for ~ may be handled in the 
same manner. The integrability conditions reduce to 

(~ + ~) [in + tp(u¢¢-l - a¢(fi-1)] 

+ a¢5~ - a¢o~ - iDq + iq(p + p) '= 0, (3.11) 

where 

n == Im[5(a¢) + (j3 - a - T)a¢ J. (3.12) 
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Thus as before, (3.11) may be integrated to yield 

q = 2/-1 J /{Re~' [n - plm(a¢¢-l)] + Im(a¢60}dr 

(3.13) 

and the integrability conditions for (2.16) and (2.17) are 
satisfied for this choice of q. This completes our proof 
of Theorem 3. 

Before attempting to determine classes of solutions of 
the BLM field equations, it would seem natural to con­
sider the possibility that one might be able to proceed 
in the spirit of the Bel, Lapiedra, Montserrat generaliza­
tion, using, however, a simpler modified set of field equa­
tions. In this direction they have established the follow­
ing theorem showing that this is in general not possible. 

Theorem 4: In order for a singular electromagnetic 
field to exist, in the generalized sense with 17 = 0, it is 
necessary and sufficient that r be a geodesic congruence 
and that 

tEabcd DLce . LJ Ib == - 21 a I 2wl a, 

where 

Lab == "V(alb) - egab , 

(3.14) 

The spin coeffiCient formulation of Theorem 4 enables 
one to interpret clearly, in terms of the Bel-Petrov type 
of the Weyl tensor and the optical scalars associated 
with r, the restrictions imposed by the integrability con­
ditions of the theorem. If we replace Lab by its spinor 
equivalent, 

LAA , BB' == 2Rey . 0 AO'BOA'O B' - (1' + ~ + a )OAO B0(A'LB ,) 

- (T + (3 + a)o(ALB)oA,oB' + o-0AOBLA,LB , + aLALBoA,oB' 

+ Rep . {LAOBOA,LB , + OALBOA,OB'} - eEABEA'B' 

and evaluate (3.14), a lengthy but elementary calculation 
yields: 

Theorem 4': The field equations (2.13)-(2.17) modi­
fied by the demand 17 = 0 and integrable if and only if 

K = 0 (3.15) 

(3.16) 

Corollary 4: If the Weyl tensor is algebraically 
special in the sense of the Bel-Petrov classification, 
having repeated principal null direction la, then the 
modified system with 17 == 0 admits a solution. 

If la is a prinCipal null direction of the Weyl tensor 
which is of Bel-Petrov Type I, then the modified system 
admits a solution if and only if r is a twist-free geodesic 
congruence. 

4. SOLUTIONS OF THE BLM SYSTEM 

In this section, we present a collection of classes of 
solutions of the BLM field equations (2.13)-(2.17). 

The mode of classification of the solutions which we 
employ, and indeed the determinants of the solutions 
themselves depend on the following fundamental theorem 
of Sachs.7 
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Theorem 5: If Rablalb = ° and -.vo = 0, and r is a geo­
desic congruence of curves affinely parameterized by r; 
then the optical scalars a, 8, and w depend on the para­
meter r in one of the three ways: 

Case I: If au"" 82 + w2 ,then 

b 8 = r , 
r2 + a 2 - b 2 

a=-----
r2 + a2 - b2 ' 

w == a . 
r2 + a2 - b2 ' 

Case 2: If aa = 82 + w2 and 8 "" 0, then 

a = 1 + ia/r, 8 = 1/2r, and w = a/2r; 

Case 3: If au == w2 and 8 = 0, then 

a == ia, 8 = 0, and w = a, 

where a and b are real-valued functions which are in­
dependent of r .8 

The symbol IX.Y . will be used to index the solutions of 
the modified generalized Singular electromagnetic field 
equations (7] = 0), whileIIX.Y.will be employed with solu­
tions of the general system. The individual classes will 
be described according to whether r is a shearing or 
shear-free congruence: i.e., by writing X = 1 or X = 0, 
respectively; and according to the r dependence of the 
optical scalars given in Theorem 5: the values of Y in­
dicating the appropriate case, e.g., 11.1.1 is the class of 
solutions to the general system corresponding to the 
situation, where r is a shearing geodesic congruence 
with associated optical scalars of the form described 
by Theorem 5, Case 1. 

The solutions of type I. X.Y. appearing in the following 
table are based on the second part of Corollary 4 and 
are the only solutions which can be determined without 
more detailed knowledge of the curvature of the under­
lying Lorentzian manifold. 

Synopsis of solutions 

In the following solutions a and b are functions intro­
duced in Theorem 5, andAO,Al'BO,B 1 are real-valued 
functions, independent of r, which are determined by 
conditions in the initial hyper surface whenever it 
exists. 9 

I. 0.1 

~ = B o' 

¢ = Ao/r + iAdr , ~ = Bo for a = 0. 

I. 0. 2 No solution exists by Theorem 5. 

I. 0. 3 ¢ == Ao + iA 1 , 

~ ==Bo' 

1.1. 1 ¢=Ao/(r+b), 

~ == Bo(r + b/r - b), 

or 
¢ = iA1/(r - b), 

~ =Bo(r-b/r +b). 
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or 

I. 1. 3 No solution exists since a "" 0, -.v 0 = ° implies 
w == 0, which contradicts Case 3 of Theorem 5. 

II. 0.1, II. 0. 2, and II. 0. 3 are the same as I. 0.1, L 0. 2, 
and I. 0. 3 with the exception that in these cases we have 

11.1. 2 ¢ == Ao + i(AI/r - aAo)' 

~ == Bor 
A5(1 + a2)r2 - 2AoAlr + A~ 

. (aBor -AIBo/Ao) 
+z +iB. 

A§(l + a2 )r2 - 2AoAlr + A~ I 

ILL 3 ¢ == Ao(l - 2iar), 

B 
~== 0 (1+2iar)+iB I . 

1 + 4a 2r2 

The techniques employed in the determination of the 
solutions in each of these classes are essentially the 
same, and hence we will illustrate the methods in the 
following cases only. 

We are assuming that 7] == K == a = ° and that 8 and w 
assume the form 

I. 0.1 8 == r /(r 2 + a2), w == a/(r2 + a2). 

If one writes ¢ d~ ¢r + i¢j' then Eq. (2.14) may be re­
solved into its real and imaginary parts yielding 

D¢r == - 1/(r2 + a2 ) (r¢r - a¢j)' 

D¢j = - 1/(r2 + a2) (a¢r + r¢j)' 

(4.1) 

(4.2) 

One may rewrite these equations in a standard fashion 
to obtain 

(r 2 + a2 )D¢r + 4rD¢r + 2¢r == 0, 

¢j == l/a[ (r 2 + a2)D¢r + r¢r]' 

(4.3) 

Equation (4.3) may be integrated USing elementary tech­
niques to yield 

and 

Ao + AIr 
¢r == -.::::---..::"" 

r 2 + a2 

1 A a2 -A r 
¢=_ I 0 

, a r2 + a2 
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Finally considering Eq. (2.16), we have 

D~ = 0 

and hence ~ = O. 

We are assuming that cP = 0,7) ;« 0 and that the optical 
scalars G, e, w assume the form 

11.1. 2 G = 1 + ia/2r, e = 1/2r, w = a/2r. 

If one writes cP = CPr + iCPi' then Eq. (2.14) may be decom­
posed into 

DCPr = 0, 

And hence 

(4.4) 

(4.5) 

Similarly writing ~ == ~ r + i~ i' one may decompose Eq. 
(2.16) into 

D~r -1 
--=- (4.6) 
~r r 

and 
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whereupon an elementary calculation yields 

Bor 

~r=[A2(1 +a2)r2-]AoAlr +A~' 

aBor -AlBO/Ao 
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3L. Bel, R. Lapiedra, and A. Montserrat, Cahiers Phys. 82, 433 
(1965). 

4E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
sR. Penrose in Battelle Rencontres, edited by C. M. DeWitt and J. 
A. Wheeler Benjamin (1968), P. 121. 

6See Ref. 4, p. 569, Eqs. (4.2k, C, and e). 
7R. Sachs, Proc. R. Soc. A 264, 309 (1961). Theorem 5 is essentially 
Theorem 6.3 on p. 327 of this reference. 

8These cases assume that ( = K = 1T = 0, l'iz. the ktrad la, /la, ma, rna 

is parallelly propagated along r. The proof then essentially consists 
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in integrating the Newman-Penrose equations (6.11 a), (6.11 b) of Ref. 
4 for the indicated conditions. 

9 A discussion of solutions to the BLM equations (2.13)-(2.17), when 
r is shearfree has been given by W. Maher and J. Zund, C.R. 
Acad. Sci. A 268, 1231 (1969) and c.R. Acad. Sci. A 268, 1307 
(1969). Other solutions have been given by L. Bel and A. 
Montserrat, C.R. Acad. Sci. (Paris) 258, 4659 (1964), and R. 
Lapiedra, C.R. Acad. Sci. (Paris) 262, 475 (1966), for plane 
monochromatic waves at spatial infinity in a Schwarzschild 
space-time. J. D. Zund, Nuovo Cimento Ser. X 55 B, 15 (1968), 
has constructed special solutions in conformally flat space-times. 



                                                                                                                                    

A note on vector-meson dominance and the compactness of current algebra 

J. A. de Azcarraga' 
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(Received 8 July 1971) 

It is shown that for any semisimple inner symmetry group (compact or not) the Lee-Weinberg-Zumino 
procedure applied to a Yang-Mills type Lagrangian leads to field algebra. The exclusion of the 
noncom pact case is analyzed. 

1. INTRODUCTION 

The usual 5U(2) ® SU(2) current algebra commutation 
relations were introduced by Gell-Mannl who postulated 
for the hadronic axial charges the same commutation 
relations as for the leptonic ones, setting the real con­
stant (}' in 

(1.1) 

equal to 1 and fixing in this way the scale of the axial 
current. The choice (}' = - 1 would give, instead of the 
compact SU 2 ® SU 2 algebra, the Lie algebra of the 
Lorentz group. 

Recently, the structure of a "relaxed" current algebra 
defined by the set of commutators 

[Q;, Vj,/x)] = i€ijkVk,/X), [Q;,Aj,/l(x)] = i€ijkAk,/l(X), 

[Qt, Vj ,/x)] = i€ijkAk,/l(X), [Qt, Aj,)x)] = iXij ,/x) (1.2) 

has been considered2 for the classical vertex pAl1f in a 
meson-pole dominance context. As a result, it has been 
found that the hypothesis of meson dominance is power­
ful enough to set 

(1. 3) 

with (}' positi,'c; it is obvious that for (}' > 0, an adequate 
definition of the scale of the axial current reproduces the 
SU(2) ® SU(2) commutation relations, the Lorentz algebra 
being excluded. 

The model used in Ref. 2 is equivalent to tree graphs in 
a Lagrangian framework. In it, the only theory which 
incorporates vector-meson dominance-through current­
field identities-is the Yang-Mills theory; current-field 
identities lead in turn, through the Lee-Weinberg­
Zumin0 3.4 (LWZ) procedure, to the algebra of fields. 
The algebra of fields has been considered only in the 
compact case, and, because of the connection found be­
tween meson dominance and the usual SU(2) ® SU(2) 
algebra in the pA l 1f example, it was hoped in Ref. 2 that 
the analysis through the Yang-MillS formalism would 
lead to similar results. We consider the problem here 
closely analysing the LWZ method without making any 
assumption on the inner symmetry group and show that, 
for any semisimple group, the LWZ procedure gives field 
algebra. Its structure is the same as that of the sym­
metry group, and the (unintegrated) commutation rela­
tions exhibit constant Schwinger terms which involve the 
Killing form of the group. However, since the field alge­
bra is necessarily associated with the corresponding 
inner symmetry group, the Lagrangian is fraught with 
physical difficulties if the algebra is not compact. Then 
if these difficulties are to be avoided, we conclude that 
the hypothesis of meson dominance implies the compact­
ness of current algebra in the framework of the Yang­
Mills theory. 
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The derivation of field algebra has its origin in the 
possibility of constructing Lagrangians with some defi­
nite properties under gauge transformations. 5,s To show 
the results mentioned above, we consider first the con­
struction of a Yang-MillS type Lagrangian, which is 
only possible when the symmetry group is semisimple; 
we derive then the equations of motion, and, once cur­
rent-field identities have been established, we obtain the 
field algebra commutation relations. 

In what follows, the Lie algebra of the symmetry group 
is defined by 

a,b,c=1,2, ... ,r, (1. 4) 

where the structure constants are real. Any matrix 
representation of the infinitesimal generators Xa -7 

(Ta)/ m satisfies 

The adjoint representation is defined by 

(1.6a) 

for any element Y of the algebra; the matrix correspond­
ing to Xa is 

(1. 6b) 

The coadjoint representation is the contragradient of 
adX; (coadXi ) = - (ad Xi )T. In the vector space of the 
algebra there exists a metric defined by the Killing 
j(ffm 7,8 

where c is a positive constant which defines the" scale" 
of the Lie algebra. When the group is semisimple, 
Cartan t s criterium states that F is nonsingular, and F 
and F-l can be used to lower and raise indices. From 
the Jacobi identity it is easy to prove the equivalence 

F(adXa )F-l = (coadXa ) 

or 
(1. Sa) 

(1. Sb) 

which implies total antisymmetry for Cabc ' For a com­
pact group the Killing form is negative definite and in 
the adequate coordinate system, F can be taken as the 
unit matrix. Then, (1. Sa) becomes an identity, the dis­
tinction between covariant and contravariant indices 
unnecessary and the structure constants C

a 
c

b 
totally 

anti symmetric . 

The existence of fields undergoing gauge transforma­
tions in the Lagrangian requires the presence of the 
Yang-Mills universal field pa,/l (J-l = 0,1,2,3; a = 1, ... , r; 
r being equal to the dimension of the algebra) to pre­
serve its invariance. 
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It is immediate to check that, for a field which trans­
forms under the symmetry group according to the rep­
resentation defined by the matrix T, 

the covariant derivative V~, 

V~¢c == o~¢c + y(Ta)cbpa~¢b, 

transforms in the same way 

6(V~CPC) = (Ta)Cb(-aalv~cpb, 
when 

6p~ = Cacbabp~ + (l/y)olla c, 

(1. 9) 

(1.10) 

(1. 11) 

(1.12) 

i.e., when p~ transforms according to the adjoint rep­
resentation for constant gauge transformations. In an 
analogous fashion, (1. 12) implies for the tensor 

(1.13) 

the adjoint representation transformation law, 

(1. 14) 

2. YANG-MILLS LAGRANGIAN AND FIELD 
ALGEBRA COMMUTATORS 

It is a well-known fact 9 that the construction of Her­
mitian (or orthogonal) scalar products invariant under 
the action of a group G imposes severe restrictions on 
the representation of G according to which the factors 
involved transform. The most trivial example of this 
is provided by the Lorentz scalar product defined by 
~u' which is indeed invariant because the representation 
1)1/2.1/2 of the Lorentz group is equivalent to its con­
tragradient,gD1 / 2.1 / 2 = (Di1/2,1/2)Tg. In the case of the 
Yang-Mills Lagrangian, the condition which allows one 
to contract the a indices of p~v in a G-invariant manner 
is the equivalence between the-real-adjoint and coad­
joint representations, which is guaranteed for semi­
simple groups [(1. 8)]. The metric is provided by the 
Killing form, and thus we write, distinguishing between 
covariant and contravariant a indices, the invariant (up 
to the mass term) Lagrangian10 

(2.1) 

.fY includes G-invariant terms in which the only depen­
dence on p is through the covariant derivative (1.10). 

We have now 

(2.2) 

(l£ o£' ___ - C c pb.llp + m2p + __ _ 
iJ(pa.,,) - Y a b C,IlU a,v a(pa,v)' (2.3) 

and the equations of motion read 

(2.4) 

The momentun conjugate to pa.v is 

1fa,v =a(aOpa,u)=-Pa,ou' 1fa,O = 0, 1fa,i = Pa,iO (2.5) 
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and the canonical commutation relations are 

[pa.i(x), 1Tb,j(X')]xo~xo = i6~6J6(x - x'), (2.6) 

i.e., 

(2.7) 

where Fab is the matrix associated to the Killing form. 

The only term which contributes to 6£ is the term in 
m 2, from which are obtained the current-field identities 

(2.8) 

To calculate the equal time commutators between the 
currents, we express Pa.O in terms of 1f a i' From the 
equations of motion we get . 

1,"11 1 (l£' 
P =--O'1f --"-C C p b"1f -- --- (2.9) a.O m 2 a., m 2 abc, m 2 o(pa,O) 

Because of the gauge invariance, the contributions to £' 
are of the form HVIl ¢a )2. Thus 

~ - (T )b' ,nc' o£' 
iJ(pa.o)-y a c"t' iJ(iJOcpb') , 

(2.10) 

Le., the last term of (2.9) involves only the fields cpa 
and their conjugate momenta, which commute with both 
p ~ and 1f ~, and so does not need to be considered when 
calculating [p~(x),p~(x')]x ~,," We obtain then, 

o 0 

[jaO(x),j~(x')]vxo = (m 2/y)2[_ (1/m 2)iJ i 1T a.i (x) 

- (y/m 2) Ca c bpb,i (x)1f c i (x), p~(x')L ~x' (2.11) 
• 0 0 

= i(m2/y)FadiJl15(x - x') - iCa c bFcdjb.I(X)6(x - x'). 

From (1. 8b) we find that 

(2.12) 

and, finally, 

[jaO(x),j~(x')l vx~ = i(m 2/y)Fad iJ 16(x - x') 

+ iCa c djJ (x) 6(x - x'). (2. 13a) 

In the same way we obtain 

(2. 13b) 

where use has been made of the Jacobi identity for the 
structure constants and of the commutation relation 

[~(X) ~(x,~ =iyC Cd ~(x) 
a(pa,O) 'iJ(pd.O) ~ "o~"o a o(pc.O) 

X 6(x - X'), (2.14) 

which is easily derived from (2.10) using (1. 5). 

Formulas (2.13a) and (2. 13b) together with the evident 
relation 

[jd (x),jJ(x')] x ~x' := 0 
o 0 

(2. 13c) 

are usually called the field algebra commutation rela­
tions. We recall that in its derivation no special proper­
ties of the structure constants (such as total antisym-
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metry) have been assumed with the exception of the 
existence of a nonsingular F (semisimplicity). 

3. DISCUSSION 

The only external difference between Eqs. (2.13) and the 
usual field algebra commutators is the presence of the 
matrix Fad instead of ° ad in the Schwinger terms; Fad 

also appears crucially in the canonical commutation 
relations (2. 7). It is clear that, after double integration 
of (2.13), the charges reproduce the algebra of the sym­
metry group. If it is compact [SU(2) 0 SU(2), for in­
stance], Fad---> 0ad and Eqs. (2.13) are the LWZ commuta­
tion relations. If the group is noncompact F is no longer 
definite, and this creates the physical difficulties that 
can be used to rule out noncompact algebras. For in­
stance, to obtain the Lorentz field algebra [noncompact 
alternative to the SU(2) 0 SU(2) which appears when Ci 

is set equal to -1 in (1. 2) and (1. 3)], it is necessary to 
assume the Lorentz group as the group of inner sym­
metry. The Killing form is, in the appropriate reference, 
proportional to the diagonal matrix (1,1,1,-1,-1,-1) 
(note that the Killing form gives the Casimir operator, 
which is M2 - N2 for the Lorentz group). Then, the 
introduction of F in the canonical commutation relations 
makes the space of states nonpositive definite,8 and no 
subsidiary conditions-such as the Lorentz condition in 
the Maxwell case-can be used to eliminate negative 
norm states. Moreover, as is the general case for a 
noncompact group, no finite Hermitian matrices can 
represent the generators of algebra; to obtain Hermitian 
charges infinite matrices operating on infinite multiplets 
of states are required, which in turn prevents the iden­
tification of the universal field as a member of such 
multiplets. These physical difficulties, inherent to the 
noncompactness of the inner symmetry group, disappear 
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when the group is compact. We are thus naturally led 
to the conclusion that the hypothesis of vector-meson 
dominance induces the compactness of current algebra, 
as was found in the hard pion calculation of Ref. 2. 
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Given the free propagator of a matrix-valued field <l>a~ in the form <<I>a~(x), <I>~b (0» = ( 1/2) (8 a~8 ~b 

Hab 8~~-2c8a#8~b ) 6(x), we derive an integral representation for the matrix superpropagator <<I>t'#(x). <1>;1,(0» 
for arbitrary N, and apply this to find the exponentially parametrized gravity superpropagator <I -g(x)lwga~(x), 
1--g(Ollw&yo (0» with g~v(xl co [exp K<I>(xlJ~v. Other applications are also mentioned. 

1. INTRODUCTION 

Nonpolynomial Lagrangians are finding increasing appli­
cation in quantum field theories of elementary particle 
interactions. The techniques needed to cope with such 
complicated Lagrangians and the results that have ap­
peared to date have been largely limited to the case 
when the field ¢(x) is scalar1 or a member of an SU(2) 
multiplet,2 though some progress has lately been achiev­
ed towards extending the methods3 to SU(3) fields. In 
the meantime one interesting problem which has arisen 
concerns the exponential parameterization of gravity4 

gJ.l.v (x) == [expK¢(x)]J.l.V, and its associated superpropaga­
tor 

for damping out ultraviolet infinities and providing a 
localizable field theory-a nontrivial generalization of 
the scalar field situation which is not amenable to any 
of the nonpolynomial techniques2 presented heretofore. 
The main object of our paper will be to provide the 
answer in closed form in terms of the free propagator 
t:. and the gauge parameter c occurring in 

<¢as(X), ¢yo (0) == HOa/>S6 + 0a&08'1 - 2co asoyo ] t:.(x), 
(1) 

although the new techniques which we develop find 
numerous other applications. 

Basic to the success of the whole approach is to look for 
an integral representation in which an invariant function 
of the matrix field ¢(x) appears to an arbitrary power. 
Only when this is found can one, by appropriate manipu­
lation, derive an integral representation for < Tr[ ¢N(X)], 
Tr[¢N(o)]) , with N arbitrary, and thence proceed to the 
matrix function 

< ~N (x) ~N_ (0» == K(N) t:.N(x) 
'+'as ''+''10 aBye 

as we shall show. Thus whereas the simple integral 
repre sentation 

l_gl-1 / 2 == 1f-2Jd4nenagasns 

has been successfully used in the past5 for dealing with 
the rational parameterization of gravity g = 17 + K¢, it 
is quite futile for our purpose since the (invariant) de­
terminant I - g I appears to be a fixed power of - 1 and 
will not lend itself to determining matrix superpropaga­
tors 

for general matrix functions F. Combing through the 
literature, it seems that generalizations of integral re­
presentations of a single variable y to a II x II matrix Y 
involve the determinant I y I of the matrix. Indeed one 
of the Simplest such generalizations is Siegel's integral6 
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which provides an expression for I y I to an arbitrary 
power: 

J dX Ix I J.l.e-Tr(XY) == 1fv(v-l)/4r v (Il) I y 1-J.l.-(1/2)(v+1), (2) 

where 

r v(ll) == r(1l + 1)r(1l + i) '" r[1l + 1(11 + 1)], 

dX == dv(v+l)/2 X == n dxaB , (3) 
a~ 8 

and the integration is taken over all 111(11 + 1) elements 
x aB which maintain the II x II matrix X symmetric and 
positive definite. Initially representation (2) is defined 
for Rell > - 1; but we shall later analytically continue 
the formula to other Il values. When 11= 1, Siegel's in­
tegral will be recognized as the conventional definition 
of the gamma function. 

In Sec. 2 we shall show how (2) and (3) provide the key 
for finding integral representations of other invariants 
and specifically Tr(XN). Used in conjunction with (1) we 
show how this enables us to arrive at integral represen­
tations of general matrix superpropagators in Sec. 3. In 
Sec. 4 we reduce these integrals to Pfaffians over double 
variable integrals following methods which have been 
extensively used in statistical mechanics. 7 The relevant 
Pfaffians are evaluated for gravity in Sec. 5 and the ex­
ponential superpropagator explicitly spelled out. We con­
clude the paper with the applicability of our new method 
to other cases such as chiral SU(3). 

2. AN INTEGRAL REPRESENTATION FOR 
<Tr(¢N), Tr(¢N» 

Begin with Siegel's integral (2) and make the substitution 
y = 1 + K¢. Then take the vacuum expectation value of 
the product of two such integrals, remembering from (1) 
that 

< e [-Tr(A</>(x»] ,e [-Tr(Bq,(O» J) 

= e{[Tr(AB)-cTrA TrB]6(x)). (4) 

Thus we get 

<11 + K¢(x)ly(1/2){v+1), 11 + K'¢(0)1-I"-(1/2)(v+l) 

dXdX' Ix IJ.l.lx' I 1" 

== J 1fv(v-l)/2 r v(ll)r v(Il') 

x (e{ -Tr(X[l +K r,)(x) J», e {-Tr(X '[1 +K</>(O)]»)) 

J dXdX' IxlJ.l.lx'IJ.I.' 
- 1fv(v-1)/2 r v (Il)r v (Il') 

x e-TrX-TrX'+KK'6~rr(XX')-cTrX TrX'J 

J dX IxlJ.I. 
- 1f v (v-1)/4 r u(lJ) 

x e-Trx I1_ KK't:.(X - c TrX)I-J.l.'-(1/2)(u+1). 

Copyright © 1973 by the American Institute of Physics 
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Noting that 

11 + K</JI-n = exp[-n Tr 10g(1 + K</J)] 

= 1-n Tr 10g(1 + K</J) + o(n2), 

we can take /J derivatives of (5) at - Hv + 1) to get 

(Tr 10g[1 + K</J(X)], Tr 10g[1 + K'</J(O)]) 

=~I J dX ~ 
o/J (v+l)/2 1T v (v-l)/4 r v(/J) 

x e- TrX Tr 10g[1 - KK't.(X - c TrX)] 

and then pick terms of order (KK,)N to reach our de­
sired integral representation 

(Tr[</JN(x)], Tr[</JN(O)J> = Nt.N ~ l~c) (/J,N)I ' (6) 
o/J ~~-(v+l)/2 

where 

I~c)(/J,N):= f dX & e-TrX Tr«(X - c TrX)N). 
1T v(v-1J/4 r v(/J) (7) 
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None of the nonpolynomial Lagrangian methods to be 
found in the literature have succeeded in deriving such 
a closed form expression, so in (6) and (7) we have a 
powerful new result. Of course as they stand the for­
mulas are not useful because I is a i v(v + 1)-fold inte­
gral which has to be differentiated; but in Secs. 4 and 5 
we show how to carry out such calculations. For the 
present, however, we simply note that the c "" 0 case 
follows by straightforward binomial manipulation from 
the case c = O. Thus 

f dX Ix l~e-TrX Tr«(X - c TrX)N) 

N (N)~ a )N-n I = 6 c - f dX Ix I~e-b TrX Tr(Xn) 
n~O n ab b=l 

= t (N) r(N + /JV + ~v(v + 1» (_C)N-n 
n=O n r(n + /JV + ~V(V + 1) 

x f dX Ix I ~e-TrX Tr(Xn) 

upon rescaling X by the factor b. Hence 

I~c)(/J,N) = t r(N + l)r(N + /JV + iv(v + 1))(- c)N-n I~O)(/J,n). 
n~O r(n + l)r(n + /JV + ~v(v + l))r(N-n + 1) 

(8) 

3. MATRIX SUPERPROPAGATORS 

We shall now prove that once we have calculated (6) so 
that the coefficients aN in 

(Tr(</JN(x», Tr(</JN(O»):= N!vaNt.N(x) (9) 

are known, this is sufficient to determine all matrix 
superpropagators 

(10) 

To that end we first write the general form for the N'th 
power 

(</J~B(X), </Jfo (0) 

:= N![i(oayOBo + 0aoOsy)bN - 0aSOyocN]t.N (11) 
--~- -- ---------- -- ------------------------_ ------_~ ________ ____.J 

and show that bN and cN are determined from the aN' 
For if we trace over (11), 

whereas a direct application of the Wick expansion on 
(9) gives 

aN = i(v + 1 - 2c) bN-1 - (1 - cv)CN_1. 

The pair of recurrence conditions demonstrate that 

~(V + 2) (v - l)bN = vaN+l - (1- cv)aN' 

~(v + 2) (v - l)cN = aN+l - t(v + 1 - 2c)a N , (12) 

so the particular matrix superpropagator (11) reads 

(11 ') 

Then for the most general matrix superpropagator (10) it follows that 

where 
a'(t.) = 6 aN+1Fl;t.N/N!, 

N 

a(t.) =6 aNFl;t.N/Nl = v-1(TrF,TrF). 
N 

(13) 

In particular, for the interesting exponential matrix case 
where F(</J) = expK</J, F N = KN. Therefore 

a(t.) = 6 aN (K2t.)N/Nl , 
N 

a'(t.) = da(t.)/d(K2t.) 

J. Math. Phys., Vol. 14, No.2, February 1973 

(13 ') 

~-----------~------~--

are supposedly determinate functions and have only to 
be substituted into (12) to provide us with the answer for 

([expK</J(x)]aB' [expK</J(O)]yo)' 

4. REDUCTION TO PFAFFIAN FORM 

Our next task is to actually evaluate the integral 

I(O)(/J N) = f dX ~ e-TrX Tr(XN) 
v, 1T v(v-l)/4 r v (/J) , 

(7') 
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since every quantity we need stems from it. Observing 
that the integrand involves functions of X invariant 
under similarity transformations, it serves to paramet­
rize the symmetric positive definite matrices X via the 
orthogonal group which diagonalizes them to A = 
diag(A1 , A2 , ..• , Av)' Thus we define 

x(e, A) = S(e)AS(e), 

where e are a set of tv(v - 1) angular parameters. The 
Jacobian of the transformation is 

dv(v+ 1)/2 X = n I A. - A·I n d A J(e) d v(v-l)/2 e 
j> i J 'k k' , 

and the change of variables simplifies (7) to 

I~O) (/1,N) = ~ n {O dAk e-A.kA~ n IAj - Ai I ~ Af, 
r v (/1) k ° j>i 1~1 

(14) 

where y v is a normalization constant (coming from the 
angular integration) determined by the condition that 
IEO)(/1,O) = v according to Siegel's integral. Integrals of 
the type (14) involve the Vandermonde determinant 

1 1 1 

Al A2 Av 
n I A - A . I = n E(A - q . A2 A2 A2 j>i J , j >i J , 1 2 v 

Ar1 Av-1 
2 

Av-1 
v 

(15) 

and occur frequently in statistical mechanics where 
methods have been developed7 for simplifying them 
which we shall adopt. From (14) and (15), using proper­
ties of determinants, the calculation reduces to finding 

y v' v 00 

1(0)(/1 N) = _v -' ~ £ dAl'" dAv 
v' r v(/J) 1~1 '0 

n EjiEl(Al)E2(A2)" ·EN+1(A Z)·· 'Ev(Av) 
j>i 

with 
(16) 

Hereafter we shall suppose that v is even (the case v odd 
is treated in the Appendix). :R.ecall now that the Pfaffian 
of anti symmetric v x v matrices A is d~e~fi~n~e~d~a~s ____ ~J 
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(17) 

where Aij is the cofactor of the element aij' It so hap­
pens that 

(18) 

Used in conjunction with (16) I becomes a sum of double 
integrals in a Pfaffian expansion 

y v 1 v 
I<f!) (/1, N) = _v_· ~ I a l2 a 13 a 1 I+N al v 

rv(/J)l~l 

with elements 

a ,j := 10
00 

dA dA'E i (A)Ej(A')E(A' - A). 

Furthermore, since Pfaffians are linewise additive, 

( ) 2y v v! '" ( N) A 
Ivo (/1,N) = -- LJ aiJ ij' r v(/1)j>i 

(19) 

where A ij is the appropriate cofactor and 

(20) 

Thus the normalization constant Yv = r v (/1)/(v - I)! 'A I. 
It remains to work out the coefficients (20) which enter 
in the Pfaffian expansion (19). Changing variables to 
A + A' = s, A - A' = s t , the integral representation of 
dtv) boils down to 

'J 

a[JN) := m2~+i+j+Nr(2/1 + i + j + N)ai~N) 
1 aft) := 10 dt (1 - t2)~[(l - t)N + (t<-'> - t)l 

x[(l- t)i-l(l + t)j-l - (t <-'> - t)l. 

These a coefficients are embodied in the generating 
function 

(21) 

a(N)zN 1 ((1- /)i-l(l + t)j-l) 
'J = 2 1 dt(l - t2)~ez coshzt ., = eZiJija(z) 
N! ° - (z ~ J) 

00 

ai(z):= ~ 
J N~O 

d 
0:=-

dz 
(1 - o)i-l(l + a)j-l - ( i ~ j), 

(22) 

.1 v'7ir(/1 + 1) 00 r(1l + 1)(tz)2k+l 
a(z) = 2 j dt(l - t2 )fl sinhzt = 1 (!) L

fl
+(1/2)(Z) =..fiT L: --------° CeZ)~+ 1 2 keO r(k + 11 + 2)r(k +~) 

where L is the modified Struve function. Thus a ij (z) is 
an entire function of z. Since the only cases of phYSical 
interest are for v .~ 6, when the i, j values are small 
integers, the most practical way of discovering the aiSN ) 

is to work out 

aft) = oNeZiJija(z)IFO = (1 + a)Naija(z)lz~0,(23) 
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a method which has another advantage as we shall find. 
In passing let us record the lowest few N values when 
v = 4 for future use: 
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~ (0) _ n, (1) __ 1 a (0) = a (1) = 4 
LL14 - LL14 - 3' 34 34 ' 

a (2) - 1. a (2) - 1 a (2) - 1. a (2) - - 12 
12 - 2 13 - 3' 23 - 2 24 - , 

al2J - ¥ , a ~1 = ~ , etc. 

With c "'" 0, therefore, the final Pfaffian expansion reads 

Y II' N 
l$c) ([.1, N) = _v -' 6 6 

r v(J1)j>in oO 

r(N + l)r(N +J1I1+ill(1I + 1))(- c)N-n 
X 1 afp)A ij 

r(n + l)r(n + [.111 + "211(11 + l»r(N - n + 1) 

to be differentiated at [.1 = - i(v + 1). Since 

introduces multiple zeros which are cancelled by zeros 
in the Pfaffian coefficients, we finally write for the 
superpropagator 

(Tr<pN(x),Tr<pN(o) =N!t.NII!yv 15 (N)(_C)N-n 
n 00 n 

(24) 

which is now a matter of straightforward computation as 
we will exhibit for the case of gravity (II = 4) below. 

5. THE GRAVITY SUPERPROPAGATOR 

In Lagrangian field theories which conform to the prin­
ciples of general relativity, one meets interactions of 
the type 

L = gaB (x)i- g(x)iwT aB' 

where gaB is the metric tensor, T as is a covariant ten­
sor density of some fields l/J, and w is the weight needed 
to render L a scalar density. The corresponding super­
propagators of interest are defined by (the second order 
in L) expectation values 

(gaS(x)i-g(x)i w,gY6(0)i-g(0)iw) = KaB Y6(t.,c') (25) 

and are given functions of the flat space free graviton 
(h-field) propagator 

(haB(x), hy6 (0) = i(11cxY'f/B6 + rya6ryBY - 2c' ryaS ryy6 )t.(x) 
(26) 

in a particular gauge specified by c'. ry is the Minkowski 
metric and g = ry + Kh + O(K2) where K is related to the 
Newtonian gravitational constant. 

Such a superpropagator was evaluated previously5 for 
the rational parameterization g = ry + K h when 1 = i and 
1. However, a localizable version of gravity4 uses in­
stead the exponential parameterization g = expK h, and 
this is the example we shall concentrate on here as it is 
not amenable to any of the previous treatments. 2 • 5 Not­
ing that 

gaB(x)i-g(x)i W = {expK[h(x) + wry Trh(x)J}aB, 

we can interpret (h + wry Trh) as a new field <p and by 
rotating to a Euclidean metric reestablish Eq. (1) with c 
given in terms of c' by 

(1 - 4c) = (1- 4c') (1 + 4w)2. 
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All we have left to do is to evaluate the coefficients aN 
appearing in (9), 

aN = 3! Y4 15 (N)(_ C)N-n ~ j 
n 00 n 0J1 -5/2 

altJ Aij 
x 6 (27) 

j>i r 4 (/-L)r(n + 4[.1 + 10)' 

to obtain the required form (12). Now in 

we encounter terms 

r(2[.1 + 2)r(2[.1 + 4) 

r(2/-L + i + j + n )r(2[.1 + 10 - i - j) (J () 
= a n a 0 

r(2[.1 + 4)r(2[.1 + 2)2 4 Jl+10+n ij, J 

which vanish at 2[.1 + 5 = 0 and are easily differentiated 
there; a little work using definition (21) gives 

o I" a0n
) Aij 327T - Li 

0[.1 -5/2 j>i r 4 ([.1)r(n + 4[.1 + 10) 

= 121\oaioJa~~- 30n1 

x (aW a~04 + aWa~04) + %On2a~2d a~04 

+ 2-n 3[n(n + 1) 

x a(nJa<OJ + 2na(nJ a <OJ + 2a(nJ a (oJ + 2a(nJ a <OJ] 
34 12 24 13 14 23 23 14' 

Inserting this into (27), we finally arrive at 

aN = 15 (N)(_ c)N-n 
noO n 

( 

2onO - %on1 + iO n2 ) 

_ 2-n - 2 34 24 x lin(n + l)a(nJ + 2na(NJ( (28) 

+ 3al~) + a ~~) 

with the a ij provided by Eqs. (22) and (23). Thus in 
terms of the generating Struve function a( z) of (22) 
having [.1 = - % , 

aN = 2(- C)N - 3N(- C)N-1/2 + N(N - 1) (- C)N-2/8 

- i 15(N)(_ c)N-n(io)ne z 
noO n 

(

n(n - 1) (1 - ( 2
)2 Y 

x +2n(1-02)(5-a2 ) oa(z)izoo , 

+4(5+02 ) 

and the first few coefficients are 

a1 = 1 - 4c, 

a3 = 4 - ¥-c + 3c2 - 4c3 , etc., 

(28') 

which may also be checked by the (more tedious) direct 
Wick expansion. 
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Lastly we form the function (13'): 

a(A) = ~ aN (K2A)N = (2 _ 3(K2A) + (K 2A)2)e_CK2 ,; 

N N! 2 8 

= (2 - 3z + ~z2)e-2cz + e z(1-2c) 

(29) 

(where L is the modified Struve function) which enters 
in 

(gcxB(X) 1- g(x) Iw, gYo (0) 1- g(O) Iw) 

= ([expK¢(x)]CX8, exp[K¢(O)]Yo) 

1 ({1)CXY1)80 +1)cxo1)8Y-~1)CX81)Y?}4-d- + ) 
= - d(K2A) a(A). 

18 {[I)CXY1)80 + 1)cxo1)8Y] (4c - 1) + 1)cx81)Yo (5 - 2c)} (30) 

This is the gravity superpropagator in the gauge c' of 
(26) where (1 - 4c) = (1 - 4c') (1 + 4w)2. Note that when 
w = - ~, c = c', and furthermore in the De Donder gauge 
c = ~ makes for some simplification in (29) and (30). 
However, (29) and (30) cannot really be sirnplified very 
much further and by their nature we see how entirely 
nontrivial is the result for exponential gravity. It goes 
without saying, however, that the superpropagator is an 
entire function of Aj indeed the leading behavior as 
A -) 00 is 

(gcx8 1_ glw ,gyol_ giw) 

~ [1)CXY1)80 + 1)CX61)8Y + 1)cx81)Yo] (K2A)3/2eK2,;(1-c) , 

where as A -) 0 we of course recover the perturbation 
series. 

6. OTHER APPLICATIONS 

We have demonstrated above how Siegel's integral (2) 
enables one to derive closed expressions for superpro­
pagators of matrix fields as in (6) and how the calcula­
tion boils down to taking the derivative of a v-dimension­
al Pfaffian as in (24). In practice this is not too diffi­
cult since the cases of practical interest involve SU(v) 
or SO(v) fields with v.; 6, where the number of Pfaffian 
terms is srnall. s Thus for the example of SU(3) there 
will be six terms in all to be differentiated, as we brief-
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ly discuss in the Appendix. For instance SU(3) 0 SU(3) 
with matrix interactions of the type in iilcx [expYsK¢]8 lJ! 

h A-. • cx 8' were 'I' IS a nonet of pseudoscalar mesons propagating 
as 

in the interaction picture, is perfectly amenable to our 
treatment. This is perhaps the single most important 
application of the new method besides the case of gravity 
covered in this paper, and will be the subject of a sepa­
rate publication. What is not so obvious is how the new 
technique helps for calculating higher orders of pertur­
bation theory which the previously used transform 
methods are at some pains to solve in any case. 

APPENDIX 

Assume v is odd. All the manipulations done until Eq. 
(16) in Sec. 4 remain valid. However, as it stands (18) 
fails. In its place one can prove by induction that 

n E{A j - Ai) = Pf(E+), 
j> i 

where the bordered (v + 1) x (v + 1) matrix E+ is de­
fined by adding an extra column and row of ones: 

E+ = I 1 
I 1 
I 
I . 
I 

-------I...!. 
-1 -1 .. 10 

with Eji defined as a v x v matrix element. DOing the 
same symmetrization steps as in the even-dimensional 
case, one obtains 

2y vi v+1 
I(O)(M N) = _u_· ~ a~fV) A .. 
v' ru(M)j>i 'J 'J' 

where a ij are defined by (20) for 1 .; i < j .; v while 
00 

ai u+1 = - au+1 i = 1 Ei (A)dA = r(M + i), o 
00 

apt}1 = 1 ANEj(A)dA = r(M + i + N), = 1, ... , v, o 

and trivially a u+1 u+1 = O. [Again by construction we 
have I~O)(M, 0) = v.] In this way we can take over formula 
(24) with the summation over i, j values running from 1 
to v + 1. 
It is quite straightforward to check that for v = lone 
correctly reproduces the known result for the scalar 
case, viz., aN = (1 - C)N. The case v = 3 includes the 
superpropagator for chiral SU(3) 0 SU(3), and the rele­
vant computation devolves upon differentiating at M = - 2, 

(

{r(J..! + 3)r(2J..! + 3 + N) + r(2J..! + 3)r(J..! + 3 + N)} 012 ) 

= (~o)N eZ 

_ {r(J..! + 2)r(2J..! + 4 + N) + r(2J..! + 4)r(J..! + 2 + N)} 013 a(z) I . 
r(2J..! + 3) r(J..! + 1) 

+ {r(M + 1)r(2J..! + 5 + N) + r(2J..! + 5)r(M + 1 + N)} 023 0 
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The details and results of this example will be given 
elsewhere because of its particular importance in strong 
interaction physics. 
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The exact wavefunctions and the corresponding binding energies are exhibited, for some N-body systems 
with long-range two-body and three-body forces. These results may also be used to obtain upper and 
lower bounds for the binding energies of certain many-body systems with two-body forces only. 

1. INTRODUCTION 

Exact results are beautiful and may be useful to test 
approximation techniques or to develop (approximate) 
computational methods. No exactly solvable model is 
known for the nonrelativistic quantum- mechanical many­
body problem with pair forces in three-dimensional 
space, besides the trivial case when all particles inter­
act pairwise via harmonic oscillator forces (except at 
most one pair of them, that can interact through an 
arbitrary potentiaP). Here we present some many-body 
models, for whom some eigenstates, generally including 
the ground state, can be explicitly exhibited. 2 The main 
limitation of these models is the (unavoidable) presence 
of three-body forces, whose character and strength is 
determined by those of the two-body forces. Another 
limitation is the long- range nature of these forces. 
Most of the models involve N distinguishable particles 
or N bosons; for N == 3 and N == 4 solvable models in­
volving (spinless) fermions are also introduced. Re­
sults are given for three-dimensional space; they 
could be easily extended to higher dimensional spaces. 

2. OSCILLATOR AND CENTRIFUGAL PAIR FORCES, 
AND ADDITIONAL THREE-BODY FORCES 

Consider the many-body problem characterized by the 
hamiltonian 

11:2 N N N 

H == - - :0 Ai + tm w 2 :0 'Y.2 + g :0 'Y:-7 
2m i=1 i>j=l lJ i>j=l lJ 

N N 

+G:0 :0 
k=1 i>j=1 

i"k.j"'k 

(rki • rkj ) 

('Y.ti'Y.tj) 

(1) 

withg > -1I:2/{4m).3 Here Ai is the Laplace operator 
acting on the coordinate r i of the ith particle, and r ij == 
r i - r j . The first term in the rhs is the usual non-' 
relativistic kinetic energy of N particles of mass m; the 
second term, is the usual harmonic oscillator pair 
potential; the third term is a "centrifugal" potential 
acting between every two particles; finally, the last 
term represents a three-body potential. It is easy to 
show that this last potential is always finite. The ratio 
of this three-body potential, acting between three par­
ticles, to the sum of the three "centrifugal" two-body 
potentials acting between the same three particles is 
expressed, in terms of the ratio a of the area of the 
triangle formed by the three particles, divided by the 
sum of the squares of the three sides of the same tri­
angle, by the following formula: 

[(r12 • r13)/{rf2 r r3) + (r23 • r21 )/(r;3 r ;1) 

+ (r31 • r32)/(rl1rl2)]/(ri~ + r2~ + r3~) 
==32a 2/{1+16( 2). (2) 
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This ratio is convenient to display the dependence of 
the three-body potential on the configuration of the 
triplet of interacting particles. Note that it is an in­
creasing function of a, so that its maximal value i 
obtains for the (equilateral) configuration for which a 
attains its maximal value ~ax == (48)-1/2. This formula 
also implies that the three-body potential vanishes 
whenever the three particles in question are aligned 
(in fact in one-dimensional space the last term in the 
rhs of Eq. (1) would vanish identically; it is for this 
reason that the model analogous to that treated here, 
but with only two-body forces, is solvable in one dimen­
sion4 ). 

If the coupling constant characterizing the three-body 
potential is related to that characterizing the two-body 
"centrifugal" potential by the equation 

(3) 

with 

b == H(l + 4mgn- 2)1/2 - 1], (4) 

a subset of the completely symmetrical eigenfunctions 
of the Hamiltonian (1) is given by the explicit formula 
(valid in the center-of-mass frame) 

1/In == const Zb/2 exp[- i(mw/n)(N/2)1/2p 2] 

x LnB [ (mw/n)(N /2)1/2p2], n == 0, 1, 2, . . . . . (5) 

where L: is a Laguerre polynomial5 and 

B == H(3N - 5) + bN(N - 1)], 

N 
Z == IT r.2., 

i>j= 1 lJ 

N 

p2 ==N
1 :0 r,2. 

i>j=1 lJ 

The corresponding eigenvalues of Hare 

(6) 

(7) 

(8) 

En == nw{N/2)1I2{2n + i[3N - 3 + bN{N - 1)]}. (9) 

For n == 0, the wavefunction (5) has no nodes besides 
those implied by the Singular nature of the centrifugal 
potential, that forces the wavefunction to vanish when­
ever the coordinates of two particles coincide. Thus it 
corresponds to the ground state of the system. 

Note that, as g ~ 0, also G ~ 0, and the wavefunction 
(5) becomes (for n == 0) the ground-state wavefunction 
of the oscillator problem without centrifugal potential 
and with Bose statistics. Thus the situation is differ­
ent from that of the one-dimensional problem of Ref. 4 
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where in the limit g ~ 0 the wavefunction becomes that 
of the groundstate of the oscillator problem with Fermi 
statistics (because in the one-dimensional case the 
zeros of the wavefunction remain as g ~ 0, while here 
as g ~ 0 they disappear). 

If instead 

G = (lf2/m )j2, (10) 

with 

f = H[1 + 4mg/(9lf2)J1/2 -I}, (11) 

then for N = 3 and for N = 4 a subset of the completely 
antisymmetrical eigenfunctions of the Hamiltonian (1) 
and the corresponding eigenvalues can be given ex­
plicitly. Specifically for N = 3, 

If;n = const(r12 A r23 )zf/2 exp[- !(mw/If)(%)1/2p2] 

XL,f[(mw/If)(%)1I2p2], n=0,1,2, .•. , (12) 

with 
F = 3f + 3 (13) 

and 
En = Ifw(%)1/2 (2n + 3f + 4). (14) 

Note that each of the three cartesian components of the 
(axial) vector If;n is an eigenfunction of H, corresponding 
to the same eigenvalue En' Thus the wavefunctions (12) 
describe bound states of three identical (spinless) 
fermions, having unit total (orbital) spin. Of course the 
eigenvalues En are (at least) threefold degenerate. The 
fact that the wavefunctions (12) change sign if the coor­
dinates of any two particles are exchanged is easily 
verified; indeed the product 

r 12 A r23 == r1 A r2 + r2 A r3 + r3 A r1 (15) 

is clearly antisymmetrical, while the two coordinates 
z and p are clearly symmetrical. 

For N = 4 a set of completely antisymmetrical eigen­
functions of H (with G always given by eqs. (10-11)) is 

lj1n = const[(r12 A r 23)· r34 ]zf/2 exp[- !(mw/If)(2)1I 2p 2] 

x L~' [(mw/If)(2)1/2p2]; n = 0,1,2, ... , (16) 
with 

F' = 6f + 5; (17) 

and the corresponding eigenvalues are 

En = Ifw2112(2n + 6f + 6). (18) 

The eigenfunctions l/ln transform now as pseudoscalars; 
thus they represent bound states of four (spinless) 
fermions, with vanishing total (orbital) spin and nega­
tive parity. 

3. COULOMB OR GRAVITATIONAL PAIR FORCES, 
AND ADDITIONAL TWO-BODY FORCES 

Consider the N-body system described by the Hamil­
tonian 

H = _If2 t (2mi )-1.6. i + . t (qi
qj

) 
l~l l>J~l r ij 
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where rki indicates the unit vector in the direction 
r ki : 

(20) 

This Hamiltonian describesN particles, of masses mi and 
charges qi' interacting via the usual Coulomb potential 
qi%/rij , and in addition via a finite-valued three-body 
potential. The function 

N 
t/l = const n exp{[(mim)/(mi + m)][(qiqj r i /lf2]} (21) 

l>J=l 

is a solution of the stationary Schrodinger equation 

Hlf; = Elf; (22) 
with N 

E = - (21f2)-1 L) {[(mim/(mi + mj)]qi2q2}. (23) 
i>j=l J 

Obviously the function If; is nodeless. Thus, if it is nor­
malizable, it corresponds to the ground state of the 
many-body system described by the Hamiltonian (19). 
A sufficient condition for normalizability is that 

Re qimiut [(qjm)/(m; + mj)]~ < 0, 
J~l 
0±i 

for i = 1,2, ... ,N. (24) 

Another case worth mentioning obtains setting 

% = iKmj' 

so that the Hamiltonian becomes 
N N 

H = _If2 L) (2m)-1 .6.
i 

- K2 L) mimj 
i~l i>j~l rij 

N 

+ K 4 1f- 2 L) 
k~l 

N m3m.2m2 
L) k 1 J • 

i>j~l (mk + milt mk + m j ) 
i¢k. 

j "'k 

(25) 

(26) 

The two-body potential of this Hamiltonian describes 
now the usual gravitational interaction. In this case the 
wavefunction If; of Eq. (22) is clearly always normaliz­
able; and, if all the masses are equal, it is completely 
symmetrical. 

4. LOWER AND UPPER BOUNDS TO THE GROUND­
STATE ENERGY OF N-BODY SYSTEMS WITH 
COULOMB OR GRAVITATIONAL PAIR FORCES 

Exploiting the fact that the three-body potential in 
Eqs. (19) and (26) is finite, and it possesses therefore 
finite upper and lower boundS, one can obtain from 
these results upper and lower bounds for the ground­
state energies of some N - body models with the usual 
(two-body) Coulomb or gravitational forces. For in­
stance from Eqs. (26) and (23) it follows that the ground­
state energy EN of the system of N bosons of mass m 
interacting via the gravitational potential- K 2m 2/r is 
bounded as follows: 

- (K4m 5/lf2)tN(N -1)[1 +t(N- 2)1)max] 

:5: EN:5: - {K4m 5 /1i 2)t N{N - 1)[1 + t (N - 2)1)min] 

(27) 
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where l1min' resp., l1max are the minimal and the maxi­
mal values for all possible spatial configurations of N 
particles, of the quantity 

N N 

11 = 6 6 (rki· r kj )/[~N(N - 1)(N - 2)], (28) 
k=l i>j=l 

i4<.. 
j;"k 

namely of the mean value, averaged over all the ~N(N -
l)(N - 2) different triplets of particles, of the sum of 
the three cosines of the three internal angles of the tri­
angles formed by each triplet of particles. Note that, 
since clearly for any triplet the maximal and minimal 
values of this quantity are respectively ~ and 1 (corres­
ponding to an equilateral triangle and to a completely 
stretched triangle, respectively), obviously l1max s ~ and 
l1min = 1. Thus a simpler upper and lower bound for 
EN is 

- (K4m 5/n 2)fsN2(N - 1) 

s ENs - (K4m5/n2)~N(N2 - 1) (29) 

The upper bound is, however, less stringent than one 
previously known. 6 The lower bound, instead, coincides 
with a lower bound previously known6; moreover for 
N> 4, it should be possible to improve it, by simple 
geometrical considerations. This is an interesting 
possibility; indeed, together with the known upper 
bound,6 the lower bound of Eq. (27) implies that at 
large N 

E
N
=- CN3K4m 5/(161f2), 

with 
[l6/(61T)] s C s ti), 

where ij is the value of l1max for N ~ ro, and it is cer­
tainly less than ~. 

5. GENERAL CASE 

(30) 

(31) 

The solvable models of Sec. 3 obtain as special cases 
from the remark that the many-body wavefunction 

N 
If; = const . n FiJ (riJ·) 

l>J=l 
(32) 

Here the primes indicate differentiation relative to the 
argument of the function. Different choices of the func­
tions Fiir) allow the construction of a number of solv­
able many-body models, with two- and three-body poten­
tials. The only requirement that the fun!!tions Fij (r) 
must satisfy in order that the many-body wavefunction 
If; of Eq. (32) describe a many-body bound state, is that 
this function be normalizable (in the eM frame); a suf­
fiCient condition for this is that each function Fij (r) be 
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square-integrable in three-dimenSional space. As a 
consequence of this requirement the potentials of the 
solvable many-body models originating from Eq. (33) 
have generally a long range; speCifically, at large r the 
two-body potential vanishes as r- 2 or r- 1, and the three­
body potential vanishes as r- 2 or remains finite, depen­
ding whether the functions Fij (r) vanish asymptotically 
as a power or exponentially. 

Clearly if all the functions Fij (r) coinCide, F i · (r) = 
F(r), the wavefunction (32) is completely symihetrical, 
and in this case, the additional assumption that all the 
masses m i coinCide, m i = m, makes Eq. (33) a conveni­
ent starting point for the introduction of solvable many­
bosons models. 

For N = 3 and N = 4 another convenient starting point 
for the introduction of solvable many-body models is 
the possibility to write in closed form solutions of the 
equation 

[ 

N N (4F" (r . . ) F" (r . . ) ) - 6 .6.
i 

+ 2 6 IJ IJ + __ 'J_ 

i=l i> j=l ri/'ij (ri ) F (rij ) 

Indeed for N = 3, three solutions of this equation are 
provided by the three cartesian components of the 
vector 

while for N = 4 a solution is 

(34) 

(35) 

(36) 

Note that, if the functions Fij (r) are all equal, F ij (r) = 
F(r), these wavefunctions are antisymmetrical under the 
exchange of the coordinates of any two particles. Thus 
they provide a convenient starting point for the con­
struction of solvable models of three or four interact­
ing fermions. 
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The class sum operator approach to the representation theory of the point groups 0 and D 4 is 
described and illustrated by means of several examples. Modified character tables are given for both 
groups, together with the class multiplication table for O. The construction of tensor operators within 
the group algebra of each group is discussed, using a modified version of traditional character analysis, 
and it is found that no E type tensor operator appears in the D 4 group algebra. 

1. INTRODUCTION 

In a previous paperl the principles of the class sum 
operator approach to group representation theory were 
outlined, and the specific group D3h was treated as an 
example. D3h is the point group used by physicists to 
describe the symmetry of the crystal field acting on the 
paramagnetic ion in various lanthanide salts (e.g., ethyl 
sulphates, double nitrates). Another point group of tra­
ditional interest in crystal field theory is the octahedral 
group 0 of proper rotations; the present paper applies 
the class sum operator approach to that group and to its 
tetragonal D4 subgroup. A class sum operator e j is 
constructed1 by taking the" average" of the group opera­
tors Rk from within a given class K (of order h): 

(1. 1) 

The operators e. commute with one another, and thus 
fit naturally intoJthe same formalism as employed in 
the Dirac commuting-operator approach to quantum 
mechanics. Each rep of the group is labelled by a set 
of eigenvalues of the e., and various results of the tra­
ditional group represeJtation theory can immediately 
be seen to be special cases of results of general linear 
spac e theory. Killingbeck 1 showed how this approach 
simplifies the decompOSition of Kronecker products of 
reps; and also how it enables the projection operators 
of L1.lwdin2 for the ·full rotation group to be directly 
related to the traditional projection operators for the 
finite point groups. Some of these pOints are illustrated 
further in the present paper by means of examples from 
the octahedral group. Section 2 gives the class multi­
plication table for 0, and states an important symmetry 
property of the table. Section 3 gives the modified group 
character tables for 0 and D 4 , briefly explaining their 
construction and use. Section 4 discusses the construc­
tion of tensor operators within the group algebras of 
o and D 4' and points out that both D 4 and D3h have cer­
tain "forbidden" operator types, while 0 has no such 
restriction. 

2. CLASS SUM MULTIPLICATION 

Each class sum operator e j commutes with every group 
operator, and, further, any product of two class sum 
operators can be written in the form 3 

(2.1) 

h N is here the number of elements in the Nth class. 
Except for a few special cases, the coefficients C JKN 
for the traditional points groups are invariant under 
interchange of any two subscripts, and the sum of the 
coeffiCients g J KN is unity for fixed J, K, and variable N. 
The only nonzero coefficients in the case of the octa­
hedral group 0 are as follows; the numbering of the 
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classes from 1 to 5 being in accord with Table I of this 
paper: 

glNN = 1 for all N, 

g222 =g244 =g245 =g255 = i, 
g333 = g345 = 2g344 = 2g355 = ~, 
g232 = 1. 

Table I. Modified character table for o. 

T, 

E 

1 
1 

1 

{ : 
1 

U 
1 

U 

eC3 3C2 

1 
1 

4 

. • n 
· • l 1 

L': 
· -. 

F • 
The symmetry of the C JIUv is similar to that of the Kro­
necker products of reps. The existence of a duality be­
tween reps and classes is also suggested by the existence 
of orthogonality relations of first and second kinds in 
traditional representation theory; this duality has been 
stressed by Gamba,4 and explored recently by Robinson. 5 

However, the coefficients displayed above show that it is 
not possible to set up a direct one-to-one correspon­
dence between the reps and classes of 0 so that the 
class multiplication structure and the Kronecker pro­
duct structure become identical. (This can be seen di­
rectly by noting that the Kronecker product T 1 X T 2 

contains the four reps A 2 , E, T 1> and T 2' while no product 
of two distinct class sums yields more than two class 
sums in its expansion). A similar conclusion also 
follows from the class multiplication rule for the group 
D 3 h; although this feature was not specifically comment­
ed on previously.1 The results given here for 0 may 
also be applied to the tetrahedral group T d if the iso­
morphism between the groups is exploited. The classes 
4 and 5 of Table I are then labeled ad and 54 instead of 
C2 and C4 • A similar comment applies to most of the 
results of this paper, after allowance for details such 
as the different conventional labeling of the T 1 and T 2 

reps for 0 and T d • 

3. MODIFIED CHARACTER TABLES FOR 0 AND D4 

Tables I and II are modified character tables for 0 and 
D 4 , constructed as suggested previously. 1 The principal 
numbers along each row are the eigenvalues (of the 
class sum operators e J)' which are associated with the 
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Table II. Modified character table for D 1 • 

1 2 

E C, 2C. 2CZ 2q 

A, 1 1 1 1 
A2 1 1 -1 -1 

B, -1 1 -1 
B2 -1 -1 1 

E 1 -1 0 0 0 

{ i {-I 
-1 {-! U U 

given rep. For example, the rep E of 0 has the eigen­
value set (1, - i, 1,0,0), and the eigenvalues A (/d are 
related to the traditional characters X (I') by the equation 

(3.1) 

where K is the class label and n(v) the dimensionality 
of the 11th rep. The bracketed sets of numbers in the 
table give the possible eigenvalues of the single named 
operator in the class name; when that operator acts 
within an irreducible subspace belonging to the given 
rep. These bracketed numbers provide useful informa­
tion even though the named operators may not commute 
and therefore may not be simultaneously diagonizable. 
The presence of three ones in the (E, 3) position of Table 
I shows at once that under the reduction 0 -> D the rep 
E of 0 gives two Al type functions, for exampli, the 
two traditional d orbitals (x2 - y2) and (3z 2 - y2) of 
crystal field theory. The descent in symmetry 0 -> D 4 
may be investigated using Tables I and II if the axes of 
the groups are aligned; for example, by means of the 
class corresponrence (0 -) D 4, E -> E, C2 -> C2 , C4 -> C4 , 

q -) q, C2 -> Cz)' which physically corresponds to 
expanding a cube along one fourfold axis. Thus, the rep 
E. of 0 has eigenvalues (1,1) for the single operator C2 , 

eIgenvalues (1,1) for the single operator C~ and eigen­
values (1,1) for the single operator C4 • This shows 
directly that E can only decompose into the reps A and 
B2 of D 4 , and the validity of the argument is unalte~ed 
by the fact that the eigenvalue sets employed may refer 
to noncommuting operators. As another example, the 
Kronecker product T 1 X T 2 has the eigenvalue set 
(1, w, W 2 )2 = 3 (1, w, w 2) for C3 and the eigenvalue set 
(1, i, - i)(-- 1, - i, i) = (1, i, - i) + (- 1, - i, i) + (1, - 1) 
+ (- 1) for C4 • This indicates the decomposition T I X 

T 2 = A2 + E + T I + T 2' and such a procedure may be 
applied to any Kronecker products of reps; the eigen­
values of other operators being used whenever necessary 
to resolve ambiguities. Table I shows that the operator 
e 3 + ~ will leave only the A2 and E components when it 

3 

operates on the nine basis functions arising from T I X 

T 2 • Further, the operator (C:3 - w)(c; - w2 ) will then elimi­
nate any remaining E component. Thus the operator 
(C~ + C3 + 1)(e 3 + t) will project out the A2 part of 
the product functions. (Note that e3 here is a class 
sum operator, while C3 is a Single group operator.) The 
way in which the class sum approach permits economical 
formulation of projection operators was discussed pre­
viously, I and the present example provides another illus­
tration. 
For dihedral groups, the explicit form of the irreducible 
components of a Kronecker product can be obtained by 
inspection in Simple cases. For example, the product 
E X E of D 4 contains the four functions I i, i), Ii, - i), 
1- i, i), 1- i, - i), if we use" C4 quantization." The func­
tions Ii, - i) and 1- i, i) both have eigenvalues 1 for C4 , 

C2 and E. The operation C2 permutes the two E basis 
functions, since it physically reverses the fourfold axis 
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direc~ion; thus, the linear combinations (2)-1/2[ Ii, - i) 
± 1- z, .z) J belong to eigenvalues 1 and - 1 of q and 
accordmgly to reps Al and A~, respectively. Note how­
ever. t?at ~he requirement C 21 i) = 1-1) is effectively a 
specificatlOn of which the two dihedral axes shall be 
called C2, and any phase factors involved must be con­
sidered in detail when explicit functions are used to 
replace the symbolic vectors Ii, - i), etc. 

4. TENSOR OPERATORS IN THE GROUP ALGEBRA 

The character analysis and prOjection operator methods 
?f gro~p representation theory are usually employed 
I~ conJunction with some operand set of functions 1/; .• If 
lmear operators X. are considered instead of functions 
the traditional forrrialism still holds if RI/;. is replaced' 
by RX

I
R-I,R being a group operator. Thi~ result is 

typical of quantum mechanical transformation theory. 
One way to establish it is to make the "obvious" con­
vention that a set of operators T~ are to be termed 
tensor operators associated with rep type K if they act 
on an. arbitrary Al type function ep to give a set of K rep 
functlOns ep~. We then require that, for any group opera­
tor R, 

(4.1) 

where the DK are the rep matrices. This requirement 
may be rewritten 

(4.2) 

Since ep is of Al type we have Rep = ep on the left-hand 
side; ep is otherwise arbitrary, and this implies that we 
must have 

(4.3) 

which accords with one traditional way of gefining tensor 
operators for a group. This basic result then leads to 
the general rule stated at the beginning of this section. 
It is possible in some cases to take a class of a finite 
group and construct linear combinations of the individual 
group operators within it so that they obey (4.2), i.e., 
constitute tensor operators. Such a procedure uses the 
group elements both as operators and as members of 
a basiS set (i.e., involves the group algebra), and is 
reminiscent of the process used in forming the regular 
representation of a group.6 Each class clearly contains 
an A 1 type operator, namely the class sum operator: 
The use of traditional character analysis methods, mo­
dified as explained above, shows that the classes of 0 
contain the following tensor operator types: 

(1) -> Al 

(3) -> E + Au 

(5) ->AI + E + T I • 

(2)->A I +A2 +T I +T 2 

(4)->AI +E+T2 

A similar procedure for D 4 yields the results 

(1) -) AI' 

(3) -> Al + A 2 , 

(5)->A I +B2· 

(2) -) AI> 

(4) -> Al + B I , 

These operator types at first sight appear to be incon­
sistent with the class multiplication properties, but this 
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is not so. For example, in the group D 4 , the Cartesian 
product of class 3 with itself gives classes 1 and 2, as 
indicated by the result e 2 e 2 = ~el + e 2 for the group 
D4 • The Kronecker product of Al + A2 with itself con­
tains an A2 part; but classes 1 and 2 contain no such 
operator, according to the result displayed above. As 
an example of the construction of the tensor operators, 
we deal here with the A land A2 operators of class 3 
for D 4' and also show how to resolve the apparent con­
tradiction just described above. It follows from the dis­
cussion at the beginning of this section that a tensor 
operator belonging to the Jl th rep can be obtained by 
taking some element X of· a class and forming the sum 

L: X <I' )* (R )RXWl, 
R 

where R runs over all group operators. The resulting 
operator is clearly a linear combination of group opera­
tors from the class of X. The Al rep of any group has 
all characters equal to unity and gives a multiple of the 
class sum operator as the Al tensor operator. For D4 
this is the sum C4 + C~ for class 3. The A2 rep of D4 
has half the characters lthose for which RC4R-l = C 4) 
equal to 1 and half of them lthose for which RC4R-l = 
q) equal to - 1. The resulting A2 tensor operator for 
class 3 is a multiple of C4 - C~. 

The Kronecker product of Al + A2 with itself can now 
be expressed alternatively in terms of these explicit 
tensor operators: 

The A2 terms in this product are of the form 
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and thus vanish identically within the group algebra. 
Thus the apparent contradictions between the results 
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of this section and the class multiplication results of 
Sec. 2 are resolved by the explicit vanishing of some of 
the formally allowed operator types. For the group 0, 
the results displayed above show that each type of tensor 
operator has a realization within the group algebra, 
whereas for D 4 no E type operator can be found in the 
D 4 group algebra. This can be seen by noting that each 
class of D 4 contains only one or two operators, and must 
contain the A I class sum operator. There is thus no 
possibility of forming the two extra E type operators 
within any class. In the case of the group D 3h , this di­
mensionality argument does not apply, and yet it is still 
found I that only certain tensor operator types can be 
realized in the group algebra. It is necessary that the 
"allowed" rep types should form a closed family under 
Kronecker product formalism, as the specific results of 
this paper illustrate. Whether this condition is sufficient 
is a problem to be investigated, together with several 
other group structural problems which have been sug­
gested by the class sum operator approach. 
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Starting with two first order linear differential equations having slowly varying coefficients and mutually 
connected by the dependent variables, the reflection problem is solved approximately as in the cases of 
electromagnetic and acoustic waves. An extension of the WKB method is developed and applied to 
study this problem up to any higher order of accuracy one requires. The solution of the second order 
differential equation in normal form by the extended WKB method is used to find the characteristics of 
propagation at a point of discontinuity of higher order derivative of the parameter. 

1. INTRODUCTION 

Since Bremmer l initiated the study of reflection and 
transmission of electromagnetic waves through slowly 
varying dielectrics by the WKB method, much work has 
been done on various aspects of the theory of the WKB 
approximation2- 7 and its application to dielectrics and 
plasmas. 8- l2 The necessity of finding a suitable exten­
sion of this method to the study of the very important 
problems of qualitative and quantitative estimation of 
coupling of different types of modes of propagation and 
scattering of radiation of one type of wave field by other 
types in slowly varying multi component plasma cannot 
be in any doubt. 

The dielectric and plasma field equations are all of first 
order and the slowly varying parameters exist in them 
in one form or the other. It is therefore evident that all 
the peculiar tendencies found in the derived second and 
higher order wave equations should be hidden in the ori­
ginal first order field equations. Hence an analysis of a 
model set of first order equations containing the charac­
teristic essential features and giving scope for an ex­
tended investigation is thought to be useful. 

Our modest aim for this paper is the solution of the re­
flection problem as generally as possible with the help 
of two first order linear differential equations with 
slowly varying coefficients. An extension of the WKB 
method is developed and used to solve the problem up to 
any higher order of accuracy one requires. The results 
can be easily applied to the cases considered in Refs. 1, 
8-10 with the gain of additional clarity. Moreover it 
would be evident that most of the properties previously 
associated exclusively with reflection and transmission 
of waves through optically transparent media can now be 
thought of as of general nature and are therefore pro­
perties of any pair of first order differential equations 
of the type considered in this note. 

2. THE REFLECTION EQUATIONS AND THEIR 
WKB SOLUTIONS 

We consider the two coupled first order differential 
equations 

a 2u± iv' = 0, 

f32v ± iu' = 0, 

(2.1) 

(2.2) 

where u and v are perturbation variables, 0'2 and f32 are 
slowly varying functions of the independent variable L 
and a primed quantity means derivative of the corres­
ponding unprimed quantity with respect to L. For prob­
lems of propagation, 0'2 and f32 are both nonzero, their 
real parts should be of the same sign, and the magnitude 
of the real part must be much greater than that of the 
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corresponding imaginary part if a 2 and f32 are complex 
quantities. The second order equations for u and v are 

v" - (2 loga)'v' + a 2{:32v = O. 

For real a 2 and (32 the WKB solution for u is 

u = [A exp(iL l ) + B exp(- iLl)]! u, 

where 

Ll = J a(3dL, 

u = (a/(3)l/2 . 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Putting this solution in (2.2) and solving for v, we get 
v = ± u[A exp(iL l ) - B exp(- iLl)] ± iiu(u2)', (2.8) 

where now a primed quantity means derivative with 
respect to L l • Let 

Uj = (l/u )A exp(iL l ), 

u y = (l/u)B exp(-iL l ), 

(2.9) 

(2.10) 

then u i and u y can be regarded as solutions, respectively, 
for the forward-going (or incident) and backward-going 
(or reflected) wavefields. If v j and v yare the similar 
components of v, then isolating them from the solution 
(2.8), we get 

Vi = ± tu i [i(u 2)' + 2u 2 ], 

Vy = ± tu y [i(u 2)' - 2u2 ]. 

(2.11) 

(2.12) 

By using the upper sign in the right-hand Side of (2.1), 
(2.8), (2.11), and (2.12) and the solutions (2.9) and (2.10) 
after some Simplification, we obtain the equations 

(2.13) 

u'· - u' = - (u. - u )(logu)' - i(u. - u )[u(1/u) " - 1]. 
t r ,r ,y (2. 14) 

Elimination of u~ and u~ in turn yields the following 
coupled equations between the incident and the reflected 
waves 

ui + [- i + iiu(l/u) " + (logu)']u i = - iiu(l/u) "u r , (2.15) 

(2.16) 

The coefficients of u r in (2.15) and of u i in (2.16) may 
be called the coupling coefficients for the incident and 
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reflected fields, respectively, and they depend on second­
order derivatives of u. 

Since the value of v in (2.8) was calculated by using Eq. 
(2. 2), the residue of solutions (2.5) and (2.8) can be ob­
tained by simplifying; after putting them on the left-hand 
side of (2.1), this gives 

i du (u 2 )" 
U + - - - - -- u (2. 17) 

(112 d£:' - 2u2 ' 

which is a quantity of the order neglected in the WKB 
solution (2. 5). The coefficient (u 2) "/2u2 for u on the 
right-hand side of (2. 17) ~an be called the residue coef­
ficient, and it should always be of the order of quantities 
neglected in the approximate solution for u. 

If A and B of (2.5) are regarded as slowly varying func­
tions of £:'1' then substitution of (2.5) and (2.8) in (2.15) 
and (2.16) means that 

(2.18) 

(2.19) 

where 

EP := - iiu(l/u)". (2.20) 

By following Bremmer,1 the series solution 

(2.21) 

is sought. By equating coefficients of £:, m +1 from both 
sides, the recursion relations are 

d~1 A m+l := p[A m + B m exp(- 2i£:'I)]' 

.-!L Bm+l := - p[B + A exp(2i£:,)] d£:'1 m mI' 

(2.22) 

(2.23) 

The sequence of these solutions, being linear in Ao and 
B 0' are superposable. 

An exact solution of (2.18) and (2.19), maintaining some 
contribution from the nonuniforrility of (112 and (32, exist 
if p is regarded as constant and 1 B 1 « IA I. Then ig­
noring the second term on the right-hand side of (2.8) 
the solutions are 

For E := 1, we get 

u = Ao([expi(l + 2p)I/2£:'1] + p{exp[- i(l + 2p)I/2£:'1 

- 2i£:'I]) exp(- iP£:'I)/[k(l + 2P)J1/2 , (2.25) 

when 12p 1« 1 this relation simplifies to 

u = A (expi£:'I)([exp(- tip2£:'1)] 

+ p{ exp[ - i(2p - t p2) £:'d} /2(1 - P)/[ k(l + 2p)J1/2. 
(2.26) 

Thus the socalled secondary reflected wave obtained in 
the fashion of Bremmer1 is only a higher order correc-
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tion term of the primary incident wave. The fact that the 
power of the exponent of £:'1 for the secondary field in 
(2. 25) has sign opposite to that for the primary is decep­
tive as is shown by the expansion. To determine the 
amplitude of the reflected and transmitted fields, it be­
comes necessary to use boundary conditions to be satis­
fied at the point £:'1 where (112 and (32 or any of their deriv­
atives are discontinuous. 

3. AN EXTENSION OF THE WKB METHOD 

We consider the normal form equation 

d2 
- t/I(£:,) + K2(£:,)t/I(£:,) := 0, 
d£:,2 

where K 2 is the slowly varying function of £:'. 

Using the substitutions 

£:'1 = J Kd£:" t/ll = (K)I/2t/1 

Eq. (3. 1) reduces to 
d2 

- t/l1(£:'1) + K~(£:'1)t/l1(£:'1) = 0, 
d£:'~ 

where 

1 d2 
E = - -- - (K)1I2. 

2 (K) 1/2 d£:'~ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The original equation (3. 1) is thus reduced to (3.3) con­
taining the coefficient K ~ which is the sum of unity and 
E2-a function proportional to second-order derivative of 
(K) 112 with respect to £:'1' If therefore 

(3.5) 

the solution of (3.3) is the usual WKB solution 

t/I := [A exp(iJ Kd£:,) + B exp(- i J Kd£:,)]I(K) 1/2. (3. 6) 

For a more general solution than (3.6) let 

£:'2 = J KId£:' = J K(l + (2)1/2d£:" 

t/l2:= (K1)1/2t/11 = (K)I/2(1 + (2)1/4t/1. 

Then (3.3) reduces to 

d2 
- t/l2(£:'2) + K~(£:'2)t/l2(£:'2) := 0, 
d£:'~ 

where 

(3.7) 

(3.8) 

1 d2 
-- -(1+ )1/4. 

f4 - (1 + (2)1/4 d£:'~ E2 (3.9) 

If 1 E41 « 1, a solution better than (3.6) can be con­
structed. 

By further generalizing we can write 

d2 
_,I, +K2,/, =0 
d£:,2 'fo'r r 'fo'r , 

r 

where 

(3.10) 

(3.11) 

(3.12) 
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dL.r = [K2(1 + (2)(1 + (4)··· (1 + f2r_2)]1/2dL., 

K~ = (1 + f2r). 

Then 

(3.13) 

(3.14) 

l/I := (A exp{i f[K2(1 + (2)(1 + (4) ... (1 + f2r)]1/2dL. 

+ B exp{-iJ[K2(1 + (2)(1 + (4)···(1 + f2r)]1/2}) 

/[K2(1 + (2)(1 + (4)··· (1 + f2r))1/4, (3.15) 

where 

(3.16) 

and 
I f2r+21 « 1. (3.17) 

The solution (3.15) of (3.1) is correct up to the rth order 
of derivatives of the parameter K2 with respect to L.r • 

4. THE GENERAL REFLECTION PROBLEM 

By using the extension of the WKB method developed 
above, the general solution of u of Eq. (2.3) correct up to 
rth order of derivatives of 0'2 and f32 is 

U := [A exp(i L.o) + B exp( - i L.o)]/ U r ' 

where 

with 

dL.o := Q1f3K1K2••• Kr , 

1 d 2 
K 2 := 1 - - (K ) 1/2 

r (K
r

_
1

) 1/2 dL.~ r-1 , 

1 d2 
K2:= 1-- -- U 

1 U dL.i ' 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Then the first order equations connecting the forward 
and backward going solutions are 

( '''') ." Z U r U r Z U r u} + - i + - - + - u j := - - - ur ' 
2 U r U r 2 U r 

(4.7) 

( 
i u~ U') i u; u' + i - - - + -.2. U := - - u· r r l' 2 U r U r 2 U r 

(4.8) 

where now a primed quantity means the derivative of the 
corresponding unprimed quantity with respect to L. o. 

The residue of the solution (4. 1) for U and for v obtained 
from (2.2) is 

U + 2 ~ := U - U
r 

- 1 + U
r ~ f2j i d [" ( ")( r 

0' dL. U r ur ,-1 

The recursion relations more general than (2.18) and 
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(2.19) are 

A' = - ti(u;/ur)[A + B exp(- 2iL.o)), 

B' := ti(u;/ur)[B + A exp(2iL.o)). 

(4.10) 

(4. 11) 

Since 

U" u" (' ')2 __ ---.!. _ .!!... _ U r - , (4.12) 
U U r U U r 

the extended WKB solution (4.1) is better than the usual 
solution. 

5. REFLECTION AT A DISCONTINUITY 

We consider the reflection at the layer L.r == y for the 
solution (3.15) of l/I. Let the pOint L. r := y be specified 
by the discontinuity of Kr (L. r ) and continuity of Kr - n 
(n:= 1,2, ... ,r -1), l/I r and (d/dL.r)l/Ir' and zero or 
negligible value of Kr+ n(n = 1,2, ... , co) on both sides of 
L. r := y. Let further Kr ,Kr ,f2r ,f2r be the values of 

I 2 1 2 

Kr and f2r' respectively, on the two sides of L. r := y. For 
solution of the form 

l/I r = exp{iKr (L.r-y)} + R exp{-iKr (L. r -y)}, 
I I 

- co < L. r < y, (5.1) 

(5.2) 

the conditions specified above applied at L. r := y yield 

2Kr (y) Kr - Kr 
T= I , R= I 2 

Kr + Ky Kr + Kr 
I 2 I 2 

If f2r is small on both sides of L. r = y, then 

[E 2"r/E2rH R,:,; .2.....::'-'------"::":"'::'::' 

K + K ' 
r 1 Y2 

where fZ r := (d2/dL.~)E2r and [PH := P1 - P2• 

The above expressions are more general than the usual 
results. 13 
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We describe the Mathieu function solutions to the radial Schrodinger equation for the -l'lr4 potential with 
reference to adiabatic elastic scattering of electrons from neutral atoms. By an appropriate choice of 
boundary conditions, the total scattering phase shift 8, decomposes into two parts: 8, = 'Y, + Pl' The 
"polarizability phase shift" p, depends solely on parameters of the interaction and is easily calculated. The 
"polarizability extracted phase shift" 'Y, contains information of the core interaction. We suggest that such a 
parametrization of this scattering problem is convenient for data analysis or for potential scattering 
calculations. We find that the Mathieu function solutions are characterized by a "polarizability range" 
r I = V 1/ k. For r > rt , the functions resemble spherical waves with phase shift p, with respect to the free 
particle wavefunctions; while for r < r, they deviate strongly from spherical wave forms. The relationship of 
r, with respect to the atomic radius grossly determines the behavior of the scattering phase shifts. 

I. INTRODUCTION 

Although the one-particle Schrodinger equation can be 
solved numerically for any given interaction, analytic 
representations of the solutions remain of considerable 
interest, especially for understanding the parametric 
dependences of the physical processes that the equation 
describes. In this paper we derive an analytic method 
for evaluating the contribution of the adiabatic charge­
induced dipole interaction to the phase shifts for low 
energy elastic scattering. The system we have in mind 
is that of an electron incident on a gaseous target of 
neutral atoms; but this analysis is also appropriate for 
other charge-neutral systems. 

For many electron-neutral atom elastic scattering ex­
periments at low energy there is a region of space 
r > d (outside the charge cloud of the atom) in which, 
to a good approximation, the effective interaction is 
represented by the electron-induced dipole potential 

V(r) = - (O'e 2)/(2r4) (cgs units), (1) 

where 0' is the (static) polarizability of the atom. This 
potential describes the Stark shift of the atomic energy 
levels by the dipole component of the electric field of 
the incident electron. According to Kleinman, Hahn, and 
Spruch1 and Callaway, LaBahn, Pu, and Duxler,2 con­
tributions to the effective interaction from the quadru­
pole component of the electric field of the electron and 
from nonadiabatic interactions of the incident electron 
with the atomic electrons take the form 

These authors have shown that for He the atomic quad­
rupole polarizability O'q and the distortion parameter 
6aoi3 have roughly equal magnitude. Thus, at least for 
the e--He system, Eq. (1) may describe the effective 
interaction with fair accuracy. For our purposes, since 
major corrections to (1) vanish as (const)/r 6 , we assume 
that a distance d can be chosen such that (1) represents 
the interaction to arbitrary accuracy for all r > d. 
Therefore, in this region of space the relevant radial 
Schrodinger equation is 

(l..-~r2 ~_Z(Z + 1) +12 +k2\ 1/1 (r;k,f) = 0, (1') 
r2 dr dr r2 r4 ) / r>d 

where 12 = (- O'e2/2)(2m/1i2) = (a/a o) Bohr2 and k 2 = 
E(2m/1i2) Bohr-2. We seek two linearly independent solu-
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tions <I>l (r; k,j) and <I>? (r; k, f) of Eq. (1') such that, with­
out loss of generality, we can write the desired solution 
to a given electron-atom scattering problem, for r > d, 
in the form 3 

1/1/ (r; k, f) = .j(2k /rr) {cosy/I'? (r; k, f) - siny/<I>?(r; k, f)}. 
r>d (2) 

However, it is clear from electron-neutral atom elastic 
cross section data that the form of an actual wavefunc­
tion at very large distances from the origin (at the target) 
is 

l/.!/(r; k,f) ~ M/rr) [sin(kr -Zrr/2 + o/)/kr]. (3) 
kr-oo 

The total scattering phase shift 0/ may be related to the 
parameter Yi by equating the asymptotic form of (2) to 
Eq. (3). In particular, since the form of the differential 
equation (1') with k 2 > 0 dictates that the functions 
<I>l,2(r; k, f) become asymptotically spherical waves, we 
can conveniently require the normalization: 

<I>l(r; k,j) ~ {sin[kr -1Zrr + P1(k, f)J/kr} , 
kr-oo 

<I>?(r;k,f) ~ {-cos[kr -1Zrr + n.(k,f)J/kr}, 
kY-H)O I"'t 

(4) 

where the "polarization" phase shifts Pz (k, f) are charac­
teristic of the magnitudes of the parameters in the 
differential equation (1'). Hence, the parameters Yl' 
which we term "polarization extracted phase shifts," 
are simply related to the experimental phase shifts by 

(5) 

It will be shown that in this formulation Pz can contribute 
up to a real magnitude of rr / 4 radians to the total scatter­
ing phase shift. 

Although Eq. (1') contains an irregular singularity at 
r = 0 for f "" 0, the limit of (1') as f --7 0 for finite k is 
well defined, so that its solutions may be chosen such 
that [in addition to normalization condition (4)] 

<I>/(r;k,j = 0) =j/(kr), 

if>?(r;k,f = 0) =y/(kr). 
(6) 

That is, <I>l,2(r; k, f) may be constructed to go smoothly 
to the normal free particle solutions, spherical Bessel 
and Neumann functions, as the atom becomes nonpolariz­
able. Thus we can establish an absolute scale for the 
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"polarization extracted phase shift" from the require­
ment that Yz(k, f == 0) = 0l(k, f = 0). Fortunately, the solu­
tions <I>l·2(r; k,f) vary smoothly throughout the physical 
range of the parameter s I, k, and f; that is, they tend to­
ward the well-known radial Mathieu functions of integral 
order as the parameters tend to certain critical values, 
in addition to satisfying boundary conditions (4) and (6) 
above. 

The scattering phase shifts 01 may be determined by 
fitting experimental cross section data. 4 Recently there 
has been substantial progress in the accurate deter­
mination of "experimental" phase shifts oz. For example, 
Bransden and McDowell5 have determined 00 and 01 for 
electrons on He for energies below the first excitation 
threshold with an accuracy of 5%

• In addition, several 
experimental groups, e.g., Gibson and Dolder,6 are now 
repeating the original work of Ramsauer and Kollath 7 

with increased precision. In such cases, Eq. (5) can be 
utilized to determine Yz "experimentally." Once Yz is 
determined one can calculate the logarithmic derivative 
of the core wavefunction Rz(d) at the point r =:: d: 

Rl (d) = [(d/dr)<I>/(r; k, f)]r=d - tanYz[ (d/dr)<I>?(r; k, f)]r=d 

<I>l(d; k, f) - tanYz <I>z2(d; k, f) 
(7) 

Alternatively, if Rl(d) is known for a model core poten­
tial, Eqs. (7) and (5) may be utilized to determine the 
corresponding scattering phase shift oz. This procedure 
avoids some numerical integration in potential scatter­
ing calculations. In the limit of very low energy, the 
analysis reduces to the "modified effective range ex­
pansion" of O'Malley, Spruch, and Rosenberg. S 

This formulation of the scattering problem suggests a 
speculation on the possibility of extrapolating, from a 
determined set of {Yz (k, f)}, a new set of phase shifts 
{Yz'(k, f')} relevant to the same atomic target with re­
duced or zero polarizability. In the future we plan to 
apply the formalism reported to the comparison of 
excess electron-atom interactions in gaseous and solid 
insulators. In this case, to a fair approximation, the 
short range atomic core potential remains intact upon 
solidification; but the polarization interactions are 
strongly modified, as the density changes. In the muffin­
tin representation of a crystal potential, in fact, all long 
range parts of the electron-atom interaction are dis­
carded except in the sense that they slightly modify the 
effective core potential. 

In Sec. II we review the properties of Mathieu functions 
as they apply to our problem. We derive from them the 
solutions <I>l·2(r; k, f) and the "polarization phase shifts" 
Pl(k,f). In Sec. III we discuss the parametric dependences 
of the solutions <I>l·2(r; k, f) on the incident electron 
energy or on the target polarizability. 

In Sec. IV we compare the results of Secs. II and III with 
the work of O'Malley, Spruch, and Rosenberg,S and Ber­
ger, Snodgrass, and Spruch,9 and Hinckelmann and 
Spruch. 10 

II. MATHIEU FUNCTION SOLUTIONS TO THE-F /f4 
POTENTIAL SCATTERING PROBLEM ll

-
13 

To demonstrate the relationship between (1') and 
Mathieu I s equation, define 
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Equation (1 '), in terms of the functions Pl·2(r), becomes 

( r2 .E:... + r .!!:... - (I + i)2 + f2 + k2r2) p1.2(r) = O. (9) 
dr2 dr r2 I r>d 

Equation (9) is analogous to the cylindrical Bessel's 
equation just as Eq. (1') is analogous to the spherical 
Bessel's equation. By following introduction of the 
scaled argument x = ,j(k/f)r, the equation then becomes 

[X2 ~ +x.!!:..- (I + i)2 + kf(~ +X2)]P1.2(X) = O. 
dx 2 dx x2 I 

(9'a) 
As expected, the properties of the solutions Pz1.2(x) are 
determined by the value of the angular momentum 1 and 
of the quantity kf, the square root of the product of 
energy and polarizability. 

With the SUbstitution x = ell, Eq. (9'a) takes the form of 
the radial Mathieu equation 

(~ - [(I + i)2 - 2kf COSh2j.L]) Pl·2(j.L) = O. 
dj.L2 

(9'b) 

Equations of the form (9b) have been extenSively stud­
iedll - 13 in connection with solutions to the Helmholtz 
equation in elliptic coordinates. In this application j.L is 
a radial variable 0 .,,; j.L < 00, and the parameters corres­
ponding to (I + i)2 and 2kf in Eq. (9'b) often have res­
tricted values in order to satisfy the condition that the 
associated equation for the angular variable have 
periodic solutions, thereby defining the Mathieu func­
tions of the second kind (and integral order). For our 
purposes, however, 

(i) - 00 < j.L < 00 since 0 .,,; r < 00, and 

(ii) periodicity of the solutions is not required so that, in 
general, solutions of nonintegral order are obtained 
according to the given magnitudes of the parameters I 
and kf.14 

In the following, for the sake of clarity, we define a 
notation associated with each series representation of 
the Mathieu functions. 

For most values of the parameters, two linearly inde­
pendent solutions to Eq. (9'a) may be written 

00 

'JTt±T(X) = 6 Cn(T)x±(T+2n). (10) 
n =-00 

This is demonstrated in Appendix A. The "characteris­
tic exponent" T = Tl (kf) is determined by the relation 

sin2 i1TT = i ~l (T = 0; kf), (11) 

where ~1(T = 0; kf) is an infinite determinant (called the 
"Hill determinant") which may be easily evaluated by 
use of recurrence relations. The coefficients Cn(T) may 
be determined from the continued fractions (All). For 
convenience, we choose the normalization C O(T) = 1. 
From the above relations, the symmJtry of the Mathieu 
functions about the point x = 1 (r = f /k) is apparent12 : 

(12) 

Solutions (10) cease to be linearly independent when T 

achieves integral values. This special case will be 
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treated at the end of the section. Unless otherwise 
stated, in the following, T is assumed to be nonintegral. 

Although series (10) formally converges in N terms for 
N such that,at worst, (x/2N)2« 1 for x> 1 or [(l/x)/ 
2 N)2 « 1 for x < 1, this representation becomes com­
putationally inconvenient for relatively small or large 
values of x. For these values of the argument the Bessel 
product series or Bessel series representations may be 
used.11-l3 

The Bessel product series solution has the form 

00 

g)g)±T(r) = :0 (-l)nCn(T)J±(T+n)(a)J±n(b), (13) 
n ::-00 

where a is the larger of {kr or f /r} and b is the smaller. 
The above restriction on the arguments a and b of Eq. 
(13) is imposed to ensure rapid convergence of the 
series for all values of r. There are two Bessel series 
representations termed "even" and "odd." The "even" 
Bessel series representation has the form 

00 
g)~T(r) = :0 (-1)nCn(T)J±(T+2n)(kr + fir). (14) 

n:::-OO 

The "odd" Bessel series representation has the forml5 

~~T(r) = I:; ~ 1/;1 n~oo (-I)nCn(T)(T + 2n) 

XJ±(T+2n)(kr +f/r). (15) 

The series (14) and (15) converge for all values of r, 
exceptr = .Jf/k (x = 1). The coefficients Cn(T) and the 
characteristic exponent T in series (13)-(15) are iden­
tical to those of the simple power series representation 
(10). All solutions defined in (13)-(15), in general, suffer 
some sort of discontinuity at the point r = jJ/k (x = 1). 

It can be shown that the above representations of Mathieu 
functions are interrelated in the following waysl3: 

00 

where YLe= YLe(l;kf)== :0 Cn(T) 
(16) 

n=-OQ 

and 00 

YLo = YLo(l;kf) == :0 (T + 2n)Cn(T). (16'a) 
n::-OQ 

Further interrelations arel3 

K± Ie} 
= -- ~ 0 (r) 

x> 1 e ±T , 
YL{oi 

Kf (e) 

x~l YL{~} ~ tT (r) 

~±T(X) = K±g)8 T(r) 
.x ~1 1. 

(17) 

provided neither YLe = 0 nor YLo = O. The constants K± 
may be determined by calculating each series at any 
convenient matching point. In particular, since ~+T(X = 1) 
= ~-T(X = 1), the ratio of constants K-/K+ can be deter­
mined from the Bessel product representations alone, 
provided ~ T(X = 1) '" 0: 

In Table I, we list some representative values of the 
matching coefficients YL{~},K±. It is amusing to note 
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that the YL {~} constants of proportionality are related to 
the values and derivatives of the functions ~ ±T(X) at 
x = 1: 

YLe = ~±T(X = 1), 

d~±TJ 
YLo=±~ Fl' 

(16'b) 

TABLE 1. Some representative polarization phase shifts and match­
ing coefficients. 

kf I T P, (rad) Jl' K' 

0.25 0 0.5417 -0.0655 0.829 0.627 1. 859 0.866 
0.35 0 0.5824 -0.1294 0.752 0.709 1.7675 0.980 
0.45 0 0.6387 -0.2179 0.662 0.817 1.728 1. 0835 
0.5 0 0.6743 -0.2738 0.607 0.884 1.724 1. 146 
0.6945 0 0.9985 -0.7673 0.0295 1. 5185 1. 985 1. 958 

0.25 1. 4917 0.0130 1. 092 1.361 10.511 -0.444 
0.5 1. 4671 0.0518 1. 1675 1.235 6.107 -0.745 
1.671 1. 0124 0.7660 1. 518 0.0386 2.201 -2.153 

0.25 2 2.4988 0.0019 1. 0265 2.436 106.156 0.074 
0.5 2 2.4952 0.0076 1. 058 2.366 44.463 0.177 
3.245 2 2.0131 0.7648 2.373 0.0865 4.038 3.883 

0.25 3 3.4996 0.00061 1.012 3.461 1487.995 -0.0074 
0.5 3 3.4984 0.00249 1. 025 3.421 441. 830 -0.0249 

0.25 4 4.4998 0.00028 1.007 4.471 26792.385 0.00053 
O. 5 4 4.4993 0.00114 1. 014 4.443 5629.356 0.00251 

Thus :ne or :n0 [and consequently 8~T(r) and 8~T(r)] 
vanish whenever the simple series solutions or their 
derivatives with respect to x, respectively, go to zero 
at x = 1. This, in general, occurs whenever T attains 
integral values. 

We have thus related three equivalent forms of Mathieu 
functions. Although there is some redundancy in the 
presentation, all three forms have been included for 
completeness and with the hope that these several forms 
have nonoverlapping domains which are useful for nu­
merical computation. 

Since we are now able to evaluate the functions ~ ±T(X) 
over the entire range of r, we can form the appropriate 
linear combinations Pl·2(r) which satisfy boundary con­
ditions (4) and (6). The asymptotic form of a Bessel 
function of order ±P is l6 

J±P(Z) ;:00 -l2/rrz cos(z 'fTfp/2-Tf/4)[1 +O(1/z)]. (19) 

Consequently, from relations (17), and noting that CQ(T) == 
1, it is apparent that the asymptotic forms of ~±T(X) are 

~±T(X) ~ K± -l2/rrkr cos(kr 'f TfT/2 - Tf/4) [1 + O(1/kr)), 
y .... oo 

(20a) 
~H(X) ~ KfMf/r cos(j/r ± TfT/2 - Tf/4) 

y .... O 

x [1 + O(I/(j /r»). (20b) 

Relations (20a) and (20b) remain valid for integral or 
complex T. From (20a) we note that the value of the 
polarization phase shift must be closely linked to that 
of the characteristic exponent T. By a comparison of 
(20a) and (4), we see that we must form two linear com­
binations of ~+T(X) and ~-T(X) such that their asymp­
totic (r ~ ctJ) forms have equal amplitude but differ in 
phase by rr/2. From the above relations (4) and (8), it 
immediately follows that we can choose 

(21) 

with alternative representations 



                                                                                                                                    

194 N. A. W. Holzwarth: Mathieu function solutions 

for r ~ -/11ii 
for r ,,; -/11ii 

(21'a) 

or,provided ::>1{~} '" 0, 

4>/(r; k,f) 

~ (1/::>1{~})b/2kr fJ~~}(r;k,f) for r > #!k 

-l (1/::>1{~})'hr/2kr (K-/K+) fJ~~}(r;k,f) for r < #!k' 
(21b) 

The second solution can be written 

rr (COS1TT 
4>?(r;k,f) = V~- -.--

2kr Slll1TT 

x 'JT'(_r(.ffi/Jr)). 
K-

K+ simTT (22) 

For convenience we write alternative forms 4>? directly 
in Neumann product series form 

00 

'YfJ±T(r) = :0 (-1)nCn(T)Y±(r+n)(a)J±n(b), (23a) 
n:::-oo 

or Neumann even or odd series form, 

00 

'Yfr(r) = :0 (-1)nCn(T)Y±(r+2n)(kr + fir), 
n=-O() 

(23b) 

I kr - f/rl 00 

'Y,fr(r) = kr + fir n~oo (-1)nCn(T)(T + 2n) 

x Y±(r+2n)(kr + f /r). (23c) 

Therefore 

~,JJ;; 'YfJr(r;k,f) for r ~If 
4>?(r;k,f) = l- rr K- ('1(<1 (r'k f)_1-(K+/K-)2 

( V2Jir K+ iJcI- r ' , sin1TT 

x fJfJ r (r;k'f~ for r ,,; If (22'a) 

or 

When T becomes an integer, 'JT'( r (x) becomes an even or 
odd function with respect to x and 1/x. As shown by 
InceI7 there can be only one solution of that type for 
those critical values of the parameters land kf. Thus, 
if 4>l(r; k, f) is chosen as the first solution, Eq. (22) is 
no longer an independent solution. However, it has been 
shownll - 13 that the alternative forms (2?a) and (22b), 
evaluated in the limit as T --7 integer L, remain valid, 
because they involve Neumann functions of integral 
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order. Since Bessel or Neumann functions of integral 
order ZL(Z) have the property that Z_L(Z) = (-1) LZL(Z), 
it follows that 

for 'JT'(L(X), ~ even~ odd 

Consequently, the alternative forms of the solutions 
become 

\ h/2kr- 88 L(r;k,f), r ~ /l1ii, 

(24) 

4>?(r; k, f) = 

(±'.h/2kr 88 L(r;k,f), r,,; fTlk, (21'a') 

or, for whichever solution {~} remains finite, 

I {(1/::>1(~}) -./rr/2kr 8~~}(r;k,f), 
4>1 (r; k, f) = { e } e 

± (1/::>1 ° )J1T/2kr fJio}(r;k,f), 

Also 

r> ,fJ7k, 

r < JJ7ii. 
(21'b') 

~ h/2kr 'YfJL(r;k,f), r ~ ,JJ7k, 

4>?(r;k,f) = )-.f1T/2kr ['Y8 L(r;k,f) +A88 L(r;k,f)], 

\ r,,;,JJ7k. (22'a') 

and, for whichever solution (~) remains finite, 

~ (1/::>1g }) J7T /2kr 'Yi~} (r; k,j), r > JJ7ii, 
4>?(r; k, f) = ) - (1/::>1 (~}) J1r/2kr ['Yi~) (r; k, f) 

( +A8i~}(r;k,f)], r <,fJ7k, (22'b') 

where 

A == (_1)L+1 [lim (1 - \K+/K-)2)]. 
r---+L Sln7TT 

(25) 

The coefficient A may alternatively be calculated by 
matching procedure as described in the National Bureau 
of Standards publication, Tables relating to Mathieu 
functions. IS If 4>l(r;k,f) is even, 88L(r =@) is finite, 
and A may be calculated by requiring (22'a') to be con­
tinuous at r = @: 

2'Y8 L(r = fflk) 
A=----,----

::>1e/K+ 
(26a) 

If 4>?(r; k,j) is odd,A may be calculated by requiring 
the derivative of (22'a') with respect to r to be con­
tinuous at r = @: 

A= 

2/kf :0:-00 (-1)nCn(T)[Y~+LUkf)Jn(-Jkf) - Yn+L(M)J~ Ukf)] 

(26b) 
A table of such "joining coefficients" for representative 
values of the parameters is given in the NBS publication 
cited. lS 

From the asymptotic forms (20a) and definitions (21) 
and (22), we see that we have constructed solutions 
4>l,2(r; k, f) such that the "polarization phase shift" as 
defined in Eq. (4) is 

Pz(k,f) = (l + t)7T/2 -T1T/2. (27) 
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Thus, information about the parametric dependence of 
the polarization phase shift is carried in the Hill deter­
minant tY(T = 0; kf) via relation (11). In general, the 
solutions to (11) are complex numbers. Let T = A + iiL. 
In terms of these purely real variables Eq. (11) becomes 

sin2(7Ti\j2) cosh2(7TiL/2) - COS2(7TA/2) sinh2(7TiL/2) 

+ (i/2) sin7TA sinh7TiL = ttY (0). (28) 

Since tY(T = 0; kf) is always real the left-hand side of 
(28) admits three types of solutions: 

Case I: ill = 0 for 0 ~ tY(O;kf) ~ 2. 

Case II: Al = L? (odd integer), 

ill '" 0 for t"z(O; kf) > 2. 

Case III: Al = Lr (even integer), 

ill '" 0 for tY(O;kf) < 0 

For physically reasonable values of land kf, 61(0; kf) 
attains values relevant to each of these three cases. 
(See Fig. 1 and Table II). Below we discuss the poliariza­
tion phase shift for each of these cases. 

Case I: 11 = 0; T = A 

As seen from Fig. 1, 0 ~ tY(O; kf) ~ 2 for small values 
of kf and relatively large angular momenta. From Eqs. 
(27) and (28) the polarization phase shift may be directly 

I 
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kf 
FIG.l. Graph of Hill determinants l!J(r = O;kf)vs.kf for angular mo­
menta I = 0,1,2,3,4; illustrating regions of real and complex solutions 
<l>l,2(r; kf). 

calculated from the relation 

sin2Pz(kf) = (_1)1+1 [tY(O;kf) -1]. (29) 

In particular, it is apparent that tY(O; kf ~ 0) ~ 1, so that 
Pl(kf ~ 0) ~ O. For fixed k '" 0, this is the result which 
is required by boundary condition (7). It has been shown, 
by expanding the Hill determinant to order (kf)2, that 
for small values of kf Eq. (29) reduces t019 

sin2Pz ~ [27T(kf)2/(2l + 3)(2l + 1)(2l - I)J + O«(kf)4) (30) 

or 

Pz ~ 7T(kf)2/(2l + 3)(2l + 1)(2l - 1), 

which is exactly the Born approximation result for l ? 1. 

TABLE II. Values of the parameters for rare gas targets. 

Energy of incident electron Values of transition point r, (Bohr) at 
in eV at critical values of kja representative electron energies S(eV) 

1=0 1=1 1=2 

a(Bohr 3 )b f(Bohr) kfJ c = 0.695 kf Jc = l. 672 kfJ c = 3.246 S = 0.001 S = 0.005 S = 0.01 S = 0.05 S'= 0.1 S = 0.5 S = 1 8=5 

He 1.35 l.16 4.87 (28.17) (106.17) 
Ne 2.70 l. 64 2.43 (14.08) (53.09) 
Ar 11.07 3.33 0.59 3.44 (12.95) 
Kr 16.74 4.09 0.39 2.27 8.56 
Xe 27.26 5.22 0.24 l. 39 5.26 

a Without correction for energy dependence of polarizability. 
bFrom Ref. 20. 

Equation (29) implies that pz(kf) attains a value of ± 7T /4 
and suffers a discontinuity in slope (kf) as tY(O;kf) ~ 2 
or 0, in accordance with T attaining integral values. 
These" critical pOints" occur for the following values 
of the parameters in the "physical" region: 

for l = 0, 

l = 1, 

l = 2, 

kf Jc = 0.694 7316, 

kf Jc = 1. 671 759, 

kf Jc = 3.246 0302. 

In Appendix B we discuss the nature of solutions 
<I>/.2(r;k,f) for integral values of T. For our purposes 
it suffices to know that they smoothly evolve from the 
solutions for nonintegral values of T as the product kf 
increases to its "critical" value. 

Cases II and III: T = L + ill (L odd or even integer) 

11.64 
13.84 
19.70 
21. 84 
24.68 

The range of parameters for which the characteristic 
exponent of the Mathieu functions is complex is often 
called the "unstable" region because Mathieu functions 
of the first kind having complex characteristic exponent 
diverge at one of the two limits of their argument. How­
ever, Mathieu functions of the second kind having com-
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7.78 6.55 4.38 3.68 2.46 2.07 l. 38 
9.26 7.78 5.21 4.38 2.93 2.46 l. 65 

13.17 11. 08 7.41 6.23 4.17 3.50 2.34 
14.61 12.28 8.21 6.91 4.62 3.88 2.60 
16.50 13.88 9.28 7.81 5.22 4.39 2.93 

plex characteristic exponent remain finite over all 
space, and are thus appropriate to our problem. 

In this range, Lz is determined (mod 2) according to 
whether Case II or III applies. The imaginary part of T 

may be calculated from the relation 

ill = (1/7T) In(1 t,/(O) -11 + {[tY(O) -1]2 -I}l12). (31) 

Consequently, the real part of the polarization phase 
shift is fixed at ± 7T /4 and only the imaginary part of the 
phase remains sensitive to the parameters of the prob­
lem. Since the experimental phase shift is, by definition, 
real for elastic potential scattering, it follows that 

(32) 

In Appendix B we also discuss the nature of solutions 
<I>?2(r; k, f) for complex values of T. We are consequent­
ly also assured that the functions <I>l·2(r; k, f) are well 
defined for Cases II and III and smoothly evolve from 
Case I as the value of kf increases, such as occurs in a 
sequence of scattering experiments with fixed target 
(fixed polarizability) and increasing energy. 
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In Table II we list representative values of the para­
meters for some real scattering systems, namely, elec­
trons incident on rare gas targets. We see that, for 
example, the s-wave polarizability phase shifts are com­
plex for electron energies 25 eV in the case of He, but 
for electron energies2 1/4 eV in the case of Xe. Al­
though the values listed here have not been adjusted for 
the energy dependence of the polarizability, we must con­
clude that the "critical values" of kf and l are realized 
within the range of ordinary scattering experiments in 
which the adiabatic dipole response of the atom to the 
incident electron is a well-established approximation 
to the dominant long range interaction. In the sense of 

1.0 -,< iolkr)~ <P~lkr;f~O) 

1 ~ 1=0 
0.5 - krt.AI25 

GO 1I+---+--t---4'>.;c--+--f---i 

~ -0.5 

-1.0 

~ 0.1 
{; 

o 

<P: Ikr; kf ~0.5) -, , , 

2 3 
k r 

4 5 
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kr 

FIG.2a. The functions 4>/(kr; kf) for relatively small values of kf 
(solid line) compared with the corresponding spherical Bessel functions 
j,(kr) '" 4>,1(kr; kf = D)(dashed line) 
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Eq. (5), then, we have shown that the "polarizability phase 
shift" can contribute up to the real magnitude of 1T /4 
radians to the total observed phase shift. 

Having discussed the mathematical relations of the prob­
lem as posed, we now make a few statements about the 
qualitative nature of the solutions iP/. 2(r;k,f). We have 
seen that for systems of finite polarizability, and for 
incident electrons at finite energy, the major properties 
of the polarization wavefunctions iP/.2 (r; k, f) are deter­
mined by the magnitudes of the angular momentum land 
of the product kf. The relative magnitudes of the polar­
izability and total energy figure only in the scale factor 
r = -Jk/f x. 

In the sense of the symmetry relation (12) and the 
Bessel function representations (21'a), (21'b), (22'a), and 
(22'b), we see that r t (x = 1) is a transition point. For 
r < r t (x < 1) the functions iP/. 2 (r; k, f) begin to oscillate 
with respect to the argument f /r while for r > r t (x > 1) 
they achieve a spherical waveform. The separate mag­
nitudes of k and f (of course) determine the "wave­
lengths" of the large r and small r oscillations, respec­
tively. This is illustrated in Fig. 2 where we have plot­
ted iPl-!Jr; k, f) for small values of kf vs the argument 
kr = .Jkf x. For comparison, corresponding plots of 
jl (kr) and Yl (kr) are also shown. 

The point r t has the following physical significance: At 
this distance the absolute value of the (classical) poten­
tial energy has the same magnitude as the total energy 
k 2 /2 (in atomic units) so that the classical kinetic 
energy must be k 2 • For r < .JJ7k, the kinetic energy is 
> k 2 ; for r > .JJ7k the kinetic energy has an average 
value between k 2 and k 2 /2. The kinetic energy is com­
posed of the centripetal kinetic energy -l(l + 1)/r2 and 
the radial kinetic energy associated with the curvature 
of the radial wavefunction. In addition, we see that, in 
general, the polarization wavefunctions iPl·2 (r; k, f) must 
have greater curvature than the free particle wavefunc­
tions. The disparity is greatest when l = 0 and the cen­
tripetal kinetic energy is zero. We may then suppose 
that the "difficulty" of complex solutions iP/. 2 (r;k,f) 
for large values of kf is due to the fact that a real series 
expansion for these values of the parameters cannot 
assimilate enough curvature to be an eigenfunction of 
the problem. Instead, an expansion with leading term to 
the power (L + iJ.l.), mathematically, has the effect of 
increasing the centripetal energy of the expression in 
the sense that it contributes a term of the same form 
and sign as the centripetal energy operator to the re-

40.0 

30.0 
1=2 

z <Pz Ikr: kf = 1.0) 
20.0 I 

10.0 krt=JT.O 
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FIG. 2b. The functions 
4>,2 (kr; kf) for relatively 
small values of kf (solid 
line) compared with the 
corresponding spherical 
Neumann functions 
)'/(kr) = 4>,z(kr; kf = 0) 
(dashed line). 
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currence relation. For example, relation (B5) becomes 
(for T = L + ill) 

C 1(T) C 1(T) (l + t)2 + 112 + L2 - 2illL 
-- + -- = . (33) 
C O(T) C O(T) kf 

In order to gain a qualitative understanding of the role 
of the polarization phase shift in determining the total 
phase shift of a given system, one should compare the 
location of the transition point r t = .JJ7k with distances 
which characterize the physical system. Two such dis­
tances are 
(a) the mean free path D of the electron, 
(b) the radius of the charge cloud of the atom, d, such 
that for r > d, Eq. (1') adequately describes the system. 

For example, we can make the following analysis of the 
importance of the mean free path of the electron for 
low energy scattering. In this case the polarization 
phase shift is given by Eq. (27) only if D »fflk. The 
smallest value of the electron mean free path likely to 
be encountered is in a diffusion cross section measure­
ment, where the appropriate value of D is approximately 
the mean free path of the gas atoms. We can thus esti­
mate a conservative lower bound of incident electron 
energies for which Eq. (30) remains valid. This is 

&(eV) > 13. 6j2/D4 (34) 

and 

where D is expressed in Bohr. For D ~ 100 Bohr and 
12 ~ 30 Bohr2, the lowest energy is ~ 4 X 10-6 eV. It 
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is not worthwhile to discuss the possibility of raising 
this lower bound by decreasing D, since for D S 100 
Bohr the electron-induced dipole interaction begins to 
be screened by neighboring atoms, and this analysis 
breaks down anyway. We are therefore led to conclude 
that, for all ordinary experiments21 to which this analy­
sis applies, the detector" sees" the scattered electron 
as an outgoing spherical wave of wavelength 21T /k and 
phase shift 0l = Yl + 0.. More precisely, it can be infer­
red that the asymptotic form of the electronic wave­
function (3) for this case is 

12k ~ sin(kr -11T/2 + 0l) 
l/Il (r) kr:~ Y rr \U ---rkr:-:----'-

cos(kr -11T/2 + (1)) 

- V kr ' 
where 

U = 1 _l(l + l)[l(l + 1) - 2] 
222! (kr)2 

(35) 

+ l(l + l)[l(l + 1) - 2][l(l + 1) - 6][l(l + 1) - 12] 
244! (kr)4 

+ (kf)2 [l(l + 1) + [Z(l + 1) - 12]J + 01_1_) 
(kr)4 24 2· 4! \(kr) 6 

v = _l(l + 1) + l(l + l)[l(l + 1) - 2][l(l + 1) - 6] l(l + l)[l(l + 1) - 2][l(l + 1) - 6][l(l + 1) - 12][l([ + 1) - 20] 
2kr 233! (kr)3 25 5! (kr)5 

+ (kf)2 _ (kf)2 (l([ + l)[l(l + 1) - 2] + [Z(Z + 1) - 20]{23[[(l + 1) - 12] + 4![([ + 1)}) + 0 (_1_) . 
3! (kr)3 (kr)5 24 • 5 25 • 5! (kr}7 

Thus, as expected from the form of the differential equa­
tion (1'), the amplitudes of its asymptotic solutions, U 
and V, are very similar to those of spherical Bessel and 
Neuman function, the differences appearing only as the 
term (kf)2/[3! (kr)3] + terms of O(l/(kr)n), n = 4,5. 

The importance of the distance d as it relates to this 
problem will be discussed in Sec. III below. 

III. PARAMETRIC DEPENDENCE OF THE 
SCATTERING PHASE SHIFTS UPON THE ENERGY 
OF THE INCIDENT ELECTRON AND THE 
MAGNITUDE OF THE POLARIZABILITY OF 
THE TARGET ATOM 

One may naively compare a set of experimentally deter­
mined phase shifts 01(E) with the appropriate polariza­
tion phase shifts PI (k, f), as we have done in Fig. 3, for 
the low energy range of the e--He scattering data analy­
zed by Bransden and McDowell. 5 This comparison illus­
trates that 0. dominates the total scattering phase shift 
01 only for large values of angular momentum. In the 
case of He, we see that the s-wave experimental phase 
shift ° 0 seems to have a magnitude and variation with 
energy which is altogether different from that of Po' 
For heavier rare gas target atoms Ne, Ar, Kr, and Xe,22 
the p -wave experimental phase shifts 0 l' also strongly 
deviate from the behavior of Pl' 

These observations may be understood when it is noted 
that low angular momentum radial wavefunctions have 
relatively high amplitude in the core region. Conse­
quently, it is reasonable to expect that low angular mo-
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mentum eigenfunctions are dominated by the core poten­
tial, while higher angular momentum eigenfunctions are 
dominated by the long range potential. On the other hand, 
such "dominance" of the core potential in determining 
the low angular momentum scattering phase shift is 
different in the presence of the long range -12 /r 4 poten­
tial tail in contrast to the case of the finite range core 
potential alone. That is, it is known from numerical 
computations 9 or asymptotic expansions8•23 that the 
low angular momentum scattering phase shifts for finite 
range potentials (those which vanish at d at least ex­
ponentially) exhibit magnitudes and energy dependences 
which are qualitatively different from the corresponding 
phase shifts for long range potentials. For example, 
Thompson24 calculated the low energy s-wave phase 
shift for e- scattering on Ar. He found that the phase 
shift in the limit k ~ 0 changed magnitude and sign when 
he used an Ar core potential with or without the - j2/r 4 

charge-induced dipole interaction. Roughly interpreted, 
this behavior occurs because a particle scattered from 
a potential which is zero for all r ~ d must have a 
spherical waveform for r > d. However, the wavefunction 
of a particle scattered from a potential which has the 
asymptotic form -12 /r 4 may achieve a spherical wave­
form only at distances r > r t = JJ7k which, at low energy, 
can be significantly larger than d (see Table II). We 
may suppose that the behavior of the experimental e-­
rare gas atom scattering phase shifts are also grossly 
determined by the relationship of the distances rt and 
d (where d "" the atomic radius). 

These statements may be made more quantitative by 
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IT-I.O 0 
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E (eV)-

examining the following model. The "core" of the atomic 
target may be roughly described as a deep potential 
well. In the Hartree approximation, the depth of the well 
goes as - 2Z/r Ryd as r --7 O. The "width" of the well 
is relatively small, as evidenced by the atomic radii 
listed in Table III. Elastic scattering at low energies 
from such a deep and narrow static potential may be 
described in terms of energy independent parameters.8 

TABLE III. Parameters of rare gas atomic potentials. 

He 
Ne 
Ar 
Kr 
Xe 

a See Ref. 25. 

22 

4 
20 
36 
72 

108 

Atomic radius (Bohr)a 

2.7 
3.0 
3.7 
3.8 
4.2 

The logarithmic derivative,RI(d), of the wavefunction 
inside the deep potential, evaluated at atomic radius d, 
is virtually independent of energy for k < k max ' where 
kmax in these cases is:::; 0.1 Bohr- l . For a given well 
depth, it is also only weakly dependent upon the exact 
form of the potential. In the following we assume that 
we can calculate R o(d) appropriate to a Hartree core 
potential. In the case of a nonpolarizable atom (such 
that f = 0, and the potential is zero for r > d) the s­
wavefunction for r > d would be 

l/Il =o(r) y ~d ..fiJiTri [cos6 0 sin(kr)/kr + sin6 0 cos(kr)/kr]. 

(36) 
In order to evaluate 60 for this model we match the 
logarithmic derivative R o(d) to that of Eq. (36) evaluated 
at r = d. If k < kmax and kd« 1, then (tan6 o)/k is inde­
pendent of energy: 

For the f '" 0 case we must modify the above argument. 
Ro(d) must be corrected to some apprOximation for the 
polarizability interaction in the core region. Equation 
(2) must be used instead of Eq. (36). For simplicity in 
the following analysiS, we assume kf« 0.695, the 
"critical value" for I = O. From Table II it is evident 
that, particularly for scattering from atomic targets of 
high atomic number, this requirement restricts the 
analysis to very low electron energies. 
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1=1 
0.7 

FIG. 3. Polarization phase 
shifts P, (kf) compared with 
experimentally inferred phase 
shifts for e--He scattering, 
o,(E), given in Ref. 5. 

For such small values of the parameters we may ap­
proximate the functions iP?,2 (r; k, f) analytically. We 
may use relation (30) to approximate: 

T"" I + t - [2(kf)2/(21 + 3)(21 + 1)(21 - 1)] + O{{kf)4). 
(38) 

From Table II and the list of atomic radii in Table III 
we see that d < r t for low electron energies, and con­
sequently we must evaluate the functions in the regime 
r < r t • From Eq. (18), the leading term for the ampli­
tude K-/K+ is given by8 

K- :::; (M)21+l r(-l - t + 1) [1 + O«kf)2 Inkf) 
K+ kf«l \: 2 r(l + t + 1) 

+ O«kf)2)] (39) 

since terms of O(kf) cancel each other. If we assume 
kf:S 0.01, the expressions will have approximately 1% 

accuracy. In this limit Eq. (21'a) and (22'a) become 

iPl(r;k,j) :::; ../1r/2kr (K-/W) eL(l+l 12)(f /r), (40) 
r<rt 
kf« 1 

iP?(rj k, f) "" - ·hi /2kr (K+ /K-)J(l+l12 )(f /r)j (41) 
r<rt 
kf« 1 

for the I = 0 case these wavefunctions become 

iPl = 0 (r; k, f) "" cos(f/r), 
r<rt 

(42) 

kJ«l 

iP?=o(r; k, f) "" - (l/kf) sin(f /r). (43) 
r<rt 
kJ« 1 

Thus, in place of Eq. (36), the total s wavefunction be­
comes 

!/I1=O(r) "" ..flJilIT {COSi'o cos(f/r) 
d';y<yt 
kJ<l 

+ [sin(,/o)/kf] sin(f /r)}. 

Using Eq. (5), we can calculate the "polarization ex­
tracted phase shift": 

11m -- = f. . (tan Yo) (ftan(f/d) - d
2
R o(d») 

k-+O k d2R o(d)tan(f/d)+f 

(44) 

(45) 
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Thus we see that if, for example,O < R o(d) < 
[f tan(f /d) ]/d 2 , we can qualitatively understand Thomp­
son's sign reversal result. In a sample rough calcula­
tion we have estimated that the Ar Hartree potential 
corrected for core polarizability has a zero energy s 
wave phase shift of roughly limk->o[(tanoo)/k] ~ - 1.1 
Bohr. Using the above listed value of the atomic radius 
of Ar in relation (37), the s-wavefunction logarithmic 
derivative is approximately Ro(d) ~ 0.11 Bohr-I. Con­
sequently, we infer, for this case, limk->o[(tanyo)/k] ~ 
1. 65 Bohr. Since the appropriate" polarization phase 
shift" Po is negligible at the low energies considered, 
the above calculated value of limk->o[(tanyo)/k] should 
correspond to the negative of the e--Ar scattering length. 
A value of the e--Ar scattering length of a ~ - 1. 65 
Bohr is in agreement with the value a ;:::: - 1. 7 Bohr 
obtained from more careful estimates.26 Note, how­
ever, that such good numerical agreement should not 
be taken seriously, since 10°10 errors in d and limk->o 
[(tanoo)/k] may correspond to roughly a 100°10 error in 
limk->o[(tanyo)/k]. However, our purpose here has only 
been to illustrate that the presence of the charge in­
duced dipole interaction strongly modifies the wave­
function in the region outside the charge cloud of the 
atom, espeCially at low energies, from the usual spheri­
cal wave form, and that the Mathieu function represen­
tative may qualitatively predict this result and its con­
sequences. The most interesting of these consequences, 
as noted previously,S is that the low energy e--polariz­
able atom cross sections are much more sensitive 
functions of energy than finite range potential scattering 
cross sections. For example, in case of the Ar modified 
Hartree potential, the calculated total cross sections 
are energy independent (within 2°10) up to electron ener­
gies of;:::: O. 5eV. However, when the long range induced 
dipole interaction is included the energy independent 
form (45) is only attained for kf:S 0.01, which means 
for the case of Ar, incident electron energies less than 
;:::: 1. 2 X 10-4 eV. 

This analysis can be carried further; by keeping terms 
of higher power in k in Eqs. (39)-(44) and by use of Eq. 
(5) we can straightforwardly obtain the "modified effec­
tive range" expansion given in Eq. (2. 3a) of Ref. 26, re­
taining terms up to O(k3). 

The above analysis can, in prinCiple, be inverted to 
determine from a set of experimental e--gaseous atom 
phase shifts, {oJ, an analogous set of phase shifts ap­
propriate to electron scattering from the same atomic 
core potential chopped off at, say, a distance rs' In 
studying some properties of dielectric solids rs could 
be the Wigner Seitz radius. For accuracy, one should 
use Eq. (7) to determine the logarithmic derivatives of 
the wavefunction at rs rather than the approximate 
analytic forms given in this section. However, having 
demonstrated the sensitivity of the low energy scatter­
ing phase shifts to the long range - j2/r 4 potential, we 
suggest that one be wary of unquestioned use of the 
muffin tin approximation, which sets all such long range 
parts of the interaction equal to zero. From the above 
considerations, the muffin tin approximation may be 
especially inaccurate for describing electron scattering 
in disordered systems. 

It is important to emphasize the major limitation of the 
Mathieu function solutions relative to their analogous 
free particle solutions. All atomic wavefunctions are 
required to approach the origin as27 
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lJI . (r) ~ C{rl - [Z/(l + 1)]rl+1 + O(rl+2)}. (46) 
atomlC r->O 

This boundary condition is compatible with spherical 
Bessel function solutions. That is, for example, if one 
uses lJIatomiC(r) ;:::: Cjl(kr) as the initial step in iteration 
in an atomic scattering problem using the free particle 
Green's function (Le., the Born approximation) satisfac­
tory results are usually achieved. However, a Mathieu 
function Green's function has virtually no value for 
evaluating the wavefunction for r < d, since as r -) 0 
the Mathieu function eventually oscillates sinusoidally 
with argument f /r, having no resemblance to (46). On 
the other hand, we recommend that numerical integra­
tion of the Schrodinger equation for a - j2 /r 4 potential 
be avoided and that, instead, one makes use of linear 
combinations of Mathieu functions to represent the de­
sired function for the appropriate region of space. 

IV. COMPARISON WITH PREVIOUS WORK 

Since this work is closely related to that of O'Malley, 
Spruch,and Rosenberg,S Berger,Snodgrass,and Spruch,9 
and Hinckelmann and Spruch,lO we feel it appropriate 
to compare the different approaches. 

(a) "Modification of effective-range theory in the pre­
sence of a long range potential. s" The correspondence 
of our notation and that of O'Malley, Spruch and Rosen­
bergS is as follows: 

Notation of O'Malley, et al., 

{3 

m 

° 1/(L) 

A 

Our notation 

f 
K- /K+ (for nonintegral 
values of T) 

- Pz(k,f) 

6z 

(
d2Ro(d) -ftan(f/d») 

d2R o(d) tan(f /d) + f f 

. (tan Yo) =-l1m --
k->O k 

These authors have solved a problem very similar to 
the one with which we are concerned here; however, they 
have imposed different boundary conditions. Roughly put, 
their boundary conditions are the reverse of ours, in the 
sense that they require simple sinusoidal behavior of 
the functions in the limit r -) 0, for the argument f /r, 
while we require simple sinusoidal behavior of the func­
tions in the limit r -) <Xl, for the argument kr. Their 
analysis of the low energy scattering phase shifts 
agrees with that given in Sec. ITI. We claim that such 
analytic expressions have fair accuracy for the range 
of parameters kf« kf Jcrit. and d « -fflk, as well as 
kf« 1 as stated by the authors. 

(b) "Tables of coeffiCients to determine the long-range 
contributions to low-energy electron-atom scattering. 9" 

This paper deals with the numberical evaluation of the 
two linearly independent solutions f(k,r)/kr and g(k, r)/ 
kr of the" cutoff" polarizability potential 

( 
1 d d 1 (1 + 1) j2 ) 

- - r2 - - + - e(r - d) + k 2 lJI(r) = 0, 
r 2 dr dr r2 r 4 

(Eq. (2.6» 
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where e(r - d) is the Heaviside unit step function. The 
boundary conditions imposed are the following: 

f(k,r)/kr == C(k)jz(kr), r < d 

f(k,r)/kr ~ sin(kr -l1[/2 + p)/kr 
,.. .... 00 

g(k,r)/kr == - Yz(kr)/C(k) + E(k)jz(kr), r < d 

g(k,r)/kr ~ cos(kr -l1[/2 + M/kr. 
,.. .... 00 

(Eqs. (2. 2) and (2.3» 

We have denoted these authors' polarization phase shifts 
by p to distinguish them from the fJ,.(kf) discussed above. 

We see that by matching f(k, r)/kr and g(k, r)/kr and 
their derivatives to linear combinations of Mathieu func­
tion solutions 1?/,2(r;k,D at r == d we can determine 
parameters p,C(k), and E(k) without explicitly integrat­
ing the differential equation (Eq. (2.6». This result may 
have some computational utility since the evaluation of 
series ~±T(X) or gjgj±T (r) is relatively straightforward. 

We write 

f(k,r) _ .... 1( 'k f) . "'-"2( 'k f) -k- - cos¢z"'z r" - sm'r'Z"'Z r, , • r ,..>d 
(47) 

Evaluating (38) and its derivative at r == d, we can deter­
mine ¢z from a relation such as: 

tan¢z 

<I>l (d; k, f) [(d/dr) In(jz (kr)}],..=d - [(d/dr)<I>/(r; k, f)],..=d 

<I>?(d; k, f)[(d/dr) In(jz(kr))],..=d - [(d/dr)<I>?(r; k, f)],..=d 

(48) 

It follows that j5 can be evaluated from 

(49) 

By inspection, if d is large enough that <I>/,2(d; k, f) may 
be represented by their asymptotic forms {sin[kr -
l1[/2 + pz(k,f)]}/kr or - [cos(kr -l1[/2 + rz)]/kr, (48) 
becomes tan¢z == tan(-pz), so that p == o. C(k) can be 
evaluated from 

By inspection, since 

g(k,r)/kr == - [cos(¢z)<I>?(r;k,f) - sin¢z<I>/(r;k,f)j, (51) 
,.. >d 

E(k) may be evaluated from 

E(k) == [l/jz(kd)]{[Yz(kd)/C(k)] 

- [cos(¢z)<I>?(d;k,f) - sin(¢z)<I>/(d;k,f)]}. (52) 

If d is such that the functions <I>/,2(d;k,f) are well rep­
resented by their spherical wave asymptotic forms, then 
C(k) "'" 1 and E(k) "'" O. These predictions are in agree­
ment with the numerical values given by Berger, Snod-
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grass, and Spruch 9 for small values of f / d. 

We also note that for l == 0 these authors 9 show that p 
jumps from an increasing function of kf to a decreasing 
function between the values of d == f /1. 4 and f /1. 6 and 
for l == 1 between the values d == f /2.8 and f /3.2. Such 
behavior is predicted when the denominator of (48) 
passes through zero. 

(c) "Low-energy scattering by long-range potentials. 10" 

Included in this paper is a perturbation expansion for 
the low-energy scattering phase shifts of a - j2/r 4 

potential. The perturbation is carried to first order in 
the long range potential for all r > d. Since this model 
is very similar to ours, the two results should be com­
patible as long as the perturbing potential is small. In 
particular, their analysis requires that the zero-order 
wavefunction for r > d have the form 

(53) 

We have shown above that such a condition may be satis­
fied for all values of angular momentum if 

1> (kf)2 > f4/d4. (54) 

For example, in order for there to be an energy range 
in which the perturbation analysis holds, the potential 
parameters must satisfy d > f. Such a restriction is 
satisfied by the values of d listed in Table III for He and 
Ne, but not for Ar, Kr, and Xe. 
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APPENDIX A: DERIVATION OF VARIOUS 
REPRESENTATIONS OF MATHIEU FUNCTIONS 

A solution to Eq. (9'a) may be generally represented 
by an infinite series: 

00 

~T(X) == .0 Cn(T)X(T+2n), (A1) 
n;::-OO 

where T is the "characteristic exponent" of the solu­
tions and where the coefficients Cn(T) satisfy the re­
currence relation 

[(T + 2n)2 - (l + ~)2]Cn(T) + kf[Cn+1(T) + Cn-1(T)] == O. 

(A2) 

In order for there to be a nontrivial solution for the 
constants Cn(T), the determinant of their coefficients in 
Eq. (A2) must vanish. Equivalently we require the 
following infinite (but convergent) determinant to vanish: 
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f)}(1") = 

[2(n-1+1")2_(l+t)2 kf 

4(n - 1)2 - (l + t)2 4(n - 1)2 - (1 + t)2 

kf (2n + 1")2 - (l + t)2 

4n 2 - (l + t)2 

o 

o 

4n 2 - (l + t)2 

kf 

4(n + 1)2 - (l + t)2 

o 

This is one of the many forms of the Hill determinant. 
The solutions of are given, for example, in Morse and 
Feshbach,ll as 

sin2t7T1" = [sin2i7T(l + i))f)}(1" = 0), (A4) 

which is equivalent to Eq. (11) in the text. The deter­
minant f)}(1" = 0; kf) is a "continuant" whose Nth approxi­
mation has the symmetric form 

1 aN 

a N - 1 1 aN - 1 

o 

aN - 1 1 a N - 1 

where (A5) 
an == kf/[4n2 - (l + i)2]. 

By expanding (A5) in minors of its center row,I:::.N can 
be written 

I:::.N = (Dk)2 - 2a Oa1(DJ)(Dk), 

where the subdeterminants D/j are defined by 

1 ak 

ak+1 1 ak+1 

aN-l 1 aN-1 

aN 1 

(A6) 

(A7) 

These determinants may be augmented from the "top" 
or the "bottom" according to the recurrence relations 

(AS) 

For our calculations we have used the starting relations 

D£ = 1 - a1a O' 

D~ = D£ - a 2al' 

Di = 1, 

D~ =Di -a2a 1 • (A9) 
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o 

kf 

4n2 - (1 + i)2 

[2(n + 1) + 1"]2 - (1 + i)2 

4(n + 1)2 - (1 + t)2 

kf 

4(n + 2)2 - (1 + t)2 

and the algorithm 

DfJ = DfJ-l - aNaN-1Dfj-2' 
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(A3) 

(A10) 

to generate successive approximations to 1:::.1(0; kf). 

Once 1" has been determined from Eq. (A4), the coeffi­
cients C (1") may be determined (up to a normalization 
constant) from the convergent continued fractions: 

Cn(T)/Cn_1(1") = - kf/[(1" + 2n)2 - (1 + t)2 
+ kfCn+1 (1")/Cn(1")), 

Cn(1")/Cn+1(1") = -/if/[(1" + 2n)2 - (1 + t)2 
+ kfCn_1(1")/Cn(1")). (All) 

These continued fractions can be evaluated by iterating 
from large values of n. By using the starting values 

CN/CN-1 = - kf/[(2N + 1")2 - (1 + t)2), 

CN/C-(N-l) = - kf/[(- 2N + T)2 - (1 + t)2). (A12) 

and the algorithms 

Cn/Cn-1 = - kf/[(2n + T)2 - (1 + t)2 + kfCn+dCn)' 

C-n/C-(n-l) 

= - kf /[(- 2n + 1")2 - (1 + t)2 + kfC-(n+l/C-n)' 
(A13) 

the desired ratios of coefficients could be calculated up 
through C1/C O and C-1/C O' 

It is apparent that, for nonintegral values of 1", two inde­
pendent solutions of (9'a) are thus given by 

00 

~±T(X) = 6 Cn(± 1")x(±T+2n). 
n=-OO 

We are allowed the further simplification Cn(- 1") = 
C-n(+ 1"), so that the solutions become Eq. (10). 

APPENDIX B: PROPERTIES OF MATHIEU 
FUNCTIONS HAVING INTEGER OR COMPLEX 
CHARACTERISTIC EXPONENTS 

(A14) 

The nature of the solutions itJ?,2 (r; k, f) for integral 
values of the characteristic exponent is primarily 
determined by some consequent interrelationships be­
tween the coefficients Cn(1" = L) 
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Cn/Cn-1 = C-(n+L)/C-(n+L-l)' 

Cn/Cn+l = C-(n+L)/C-(n+L+l)' (B1) 

These relationships ensure that, for example, terms in 
series (10) c

n
x(2n+L) and C_(n+L)x-(2n+L) will be paired 

symmetrically or antisymmetrically. For illustration, 
consider L > O. For odd T = LO, relations (B1) deter­
mine that 

(C -[(LO+l)/2/C -[(LO -l)/21)2 1 (B2) 

and consequently that 

C olC = ± 1, C olC = ± C IC , (B3) 
- L 0 -(n+ L) 0 n 0 

leading to {~djn} Mathieu functions of odd integral order. 

For even T = Le, relations (B1) determine that 

C e/C = 1. 
-L 0 

(B4) 

Consequently, one can form even Mathieu functions of 
even integral order by setting Co == 1. Odd solutions can 
be formed by setting Co = - 1 if the coefficient of the 
neutral term, C e = O. (Similar arguments hold for 
L < 0). -(L /2) 

In our problem for angular momenta 1 = 0 or 1 = 1, 
T ~ L 0, and thus relations (B2), (B3) are applicable. 
From consideration of the general equality 

(B5) 

we conclude that, for l = 0, at the critical value of kf, 
C_l/C o = -1 and consequently Cn(TO = 1) = 
- C-n-1 (T 0 = 1). Thus for this case 4>l~o(r; k, f) takes the 
familiar form which is an "odd" function with respect to 
(..fIi71 r) and (-./iil1 r)-l: 

4>l=o(rj k, f) = 1.. (1T f Cn(T 0 = 1) 
K+ 'IV;; n=O 

x [(if 12n
+
l 

- (if r) -(2n+l>] 

-J(kr)J fL)J- -.! (1T (kr -fir) 
" n+l\r -:n0 'IV;; kr + fir 

x f <-1)n(2n+1)Cn(To=1)J2n+lfkr+L), 
-0 \ r 

for r 7 If. (B6) 

The second solution may be written 

& Eo (-1)nC,,(T o = 1) [Yn+1 (kr) I n (f) 
- Yn(kr) In+1 (~) J, r ~ Jl., 

x [Yn+l (f) In(kr) - yn(f) I n+1 (kr)], 

r~A, 
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~o & (Z; ~jj;) Eo (-1)nCn(T o = 1) 

x (2n + l)Y 2n+1 (kr + f), r> -If, 
1. 2 (1T (fir - kr) 

A4>I=O(r,k,f) +:no V2kr fir +kr 
(B7) 

<Xl 

X :6 (-l)nCn(T o = 1)(2n + 1) 
n=O 

X Y 2n +1 (kr +f), r < A, 
where A = 0.744, 

Similarly, for the 1 = 1 case, at its critical value of kf, 
CdCo = + 1, and consequently Cn(T 1 = 1) = C n - 1 (T1 =1). 
4>l= 1 (r; k,j) then becomes the" even" function 

x [(jJr) 2n+1 + (jJrt(2
n

+l>] 

= & Eo (-1)nCn(T 1 = 1) [In+l(kr)Jn(f) 

+ In(kr)Jn+1(f) J =;e flr Po (-1)nCn(T 1 == 1) 

X J 2n+1(kr + f), for r ;t' A. (BS) 

The second solution may be written 

(B9) 

r< If, 
where A = 1.102. 
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For the case 1 == 2, at the critical value of kf, r ap­
proaches the even integer Le 2. <l>?~2(rjk,f) then be­
comes the completely even function 

1 rrri 00 

<l>?=2(rjk,f) = K+ V2kr )c-1 (r 2 = 2) + Eo Cn(r 2 = 2) 

x [(g r) 2n+2 + (g 1-(2n+2T~ 
=: j2~r {c1 (r2 =: 2)J1(kr)J1 (f) + Po (~l)n 

x Cn(r 2 =: 2) [In +2(kr)Jn (f) + In(kr)Jn +2 (f)]} 
=: ~e &r {- C-1 (r2 =: 2)Jo (kr + f) 

+ 2 Eo (-1)"Cn(r 2 =: 2)J2n +2 (kr + f)?, 
for r ;L A, (B10) 

with the second solution 

/if; ~C_l(r2 =: 2)Y1 (kr)J1 (f) 
+ Eo (-l)nCn(r 2 = 2) [Yn+2(kr)Jn (f) 
+ Y,,(kr)Jn+2 (f)J~, r ~ A, 

ifJp=2(rj k,f)=: - AifJA2(rj k, f) -~ 

x~C_l(r2 == 2)Y 1 (f) J1(kr) 

00 

+ z:; (-l)nCn (r 2 =: 2) 
n=O 

x [Yn+2 (f)J,,(kr) + Yn (f)J"+2(kr~}, 

00 

+ 2 z:; (-1)nCn(r 2 = 2) 
n~O 

x Y 2n+2 (kr + f), r> A, 
- AifJl=2(r;k,f) - ~e & 

x[-C1 (r 2 = 2)Yo (kr +f) 
00 

+ 2 z:; (-l)nC,,(r 2 =: 2) 
n=O 

where A =: 1. 900. 
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In the case of a complex characteristic exponent r =: 

L + ill the expansion coefficients C,,(L + ill) are again 
subject to certain interrelationships as a consequence 
of the fact that Re{r} =: integer. For this case relations 
(Bl) become the more general equalities 

Cn(r)/C,,_l (r) = (C(n+L)(r)/C(n+L-l) (r))*, 

Cn(r)/Cn+1(r) =: (C(n+L)(r)/C(n+L+l) (r))* 

(complex conjugate) (B12) 

Using the notation C_n(r)/C_n +1 (r):= iC,,/C-n +1 1 e iU
- n , 

relations (B3) and (B4) become 

(El3) 

(B14) 

It is amusing to note that we can write (10) in the follow­
ing form for these cases: 

'Jrr . (x) = e ial2 x ill [~ a (x2n+L + x-(2n+L» (L+ '1') L.J n 
n=O 

+ i ~o bn(x 2n +L - X-(2n+L»] 

Since X ill := cos(f.llnx) + i sin(f.1lnx), this means that 

Re[e- io/2 'Jrr(L+il1)(X)] is even with respect to x and l/x 
while 

Im[e- iaI2 'Jrr(L+il1)(x)] is odd with respect tox and l/x. 

Ie. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. 165, 53 (1968). 
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{ r 2 dr WI (r; k,j) Jkk~~~ k' dk' W/ (r; k',n I. 

4For example, experimental cross sections may be fitted to the following 
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sin201 (Bohr2); for the differential cross section, 1-0 
[k 2 (da(8 )/dn) = ir;~o(21 + I )elb / sinO/PI (cos (} )!2 = 2:7r~ 0 
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{Of + 1)(21' + 1)(sin28Isin2ol' + Y.. sin 21i Isin2ol' )p/(cos e )Pr(cos O)} 
(Bohr2/Steradian); or for the momentum transfer cross section, 
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J. Math. Phys., Vol. 14, No.2, February 1973 

18National Bureau of Standards, Tables relating to Mathieu functions 
(U. S. Government Printing Office, Washington, D. C., 1967). For 
convenience, we list 

their notation our notation 

s 4kf 
b (I + '12)2 + 2kf 
r L 

19M. J. O. Strutt, Ergeb. Math. I, 1932, Sec. III. I. b., Eq. (3). 
2oH. Dalgarno, Adv. Phys. 11,281 (1962). 

204 

21 Possibly smaller values of JJ and S may be achieved in a pressure 
broadening experiment. Here the presence of foreign gases causes a 
frequency shift of the absorption lines corresponding to transitions to 
highly excited states of alkali atoms (for example). The magnitude of 
the frequency shift is related to the elastic cross section of a very low 
energy electron with the foreign gas atom. However, the interaction in 
this case is perturbed by the Coulomb field of the far off alkali 
positive ion. In addition, cross sections measured in such experiments 
have much lower precision than direct cross section measurements. 

22p. S. Hoeper, W. Franzen, and R. Gupta, Phys. Rev. 168,50 (1968); 
our unpublished work. 

BB. R. Levy and 1. B. Keller, 1. Math. Phys. 4, 54 (1963). 
240. G. Thompson, Proc. R. Soc. A 294, 160 (1966). 
2sFor an estimate of an atomic radius we have used one-half the 
distance of the Lennard-lanes minimum of interatomic energy. 1. O. 
Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular theory 0/ gases 
and liquids (Wiley, New York, 1954), Table I-A, p. 1110; G. L. 
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Off-energy-shell t matrix for local potentials with nonlocal square well core 
interaction· 
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An analytic expression is obtained for the s -wave t matrix of a nonlocal square well core interaction 
combined with an outside local square well. The result is compared with the t matrix of the hard-core 
square well. In particular, the t matrix obtained is found to remain finite for large values of the energy 
parameter in contrast to the hard-core square well t matrix. 

1. INTRODUCTION 

A mathematically interesting interaction proposed re­
cently by Razavyl is that of the nonlocal square well. 
This interaction hasthe characteristic feature that its 
kernel is related to the Green's function of the second­
order differential equation. In the present paper, analy­
tic expressions are derived for the off-shell two-body 
t matrix for a combination of an outside local square 
well with a core interaction of the nonlocal square well 
type. 

Actually, our calculation presents an example where 
exact analytic expressions of the off-shell t matrix 
could be obtained. z- 4 Using a wavefunction approach, 
which is generalized here to the case of nonlocal po­
tentials, Van Leeuven and Reinerz obtained explicit ex­
pressions for the t matrix in case of a local square well 
combined with a hard-core interaction. We also aim 
at comparing the present nonlocal-core t matrix with 
that of the hard core, which allows to demonstrate the 
more generalized features of the former. 

It should be remarked that the interest in nonlocal po­
tentials has recen'uy evolved in connection with nuclear 
structure investigations, 5 being suggested as possible 
replacements for the Singular potential in perturbation 
expansions. Using our t matrix, it should be possible 
to make simple and rather indicative study of such non­
locality effects in a number of situations. For example, 
it is the main input to the Faddeev equations which pro­
vide exact solutions to the three-body problem,6 and it 
is also closely related to the Brueckner G matrix of 
nuclear matter. 7 

In Sec. 2 the analytic expressions are given and their 
properties are discussed. The comparison is also made 
with the case of the hard-core square well potential. In 
particular, the nonlocal-core t matrix is found to re­
main finite as the energy parameter goes to infinity in 
contrast to the hard-core t matrix. Further, the t matrix 
obtained is shown to contain the features of the hard­
core t matrix as a limiting case. 

2. THE OFF-SHELL t MATRIX 

The two-body t matrix satisfies the Lippman-Schwinger 
equation: 

t(q) = v + v 1 t(q), (2.1) 
(lzzqz/21J.) - (P~/21J.) 

where q = (2I'E/IiZ)1/Z with E the (complex) energy para­
meter and Pop is the relative momentum operator having 
the normalized plane waves 

(rlk) = (21T)-3/Z exp(ik'r) (2.2) 

as state eigenfunctions. 
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The potential v in (2. 1) will be assumed to be central 
and nonlocal. One then writes 

(2l + 1) v/r, r') ~ ~ 
v(r, r') = 6 P1(r, r'). 

I 411 rr' 
(2.3) 

The approach of Van Leeuven and Reiner can be readily 
generalized to the case of nonlocal potentials. The 
off-shell matrix elements of the t operator in (2.1) 
may be expressed as 

(It' I t(q) Ik) = (It, lit; q.k)' 

where 

(2.4) 

lit; ) = Ik) + 1 v 11t;). (2. 5) 
q.k VzZqz/21J.) _ (P,i/21J.) q.k 

It is useful here to consider the coordinate represen­
tation of the above equation whose radial part may then 
be expressed as 

u1(q,kjr) =rjl(kr)-~ LX> dr' 1«> dr"G I q(r,r') 
liZ 0 0 • 

where 

(r Ik) = (21T)-3/Z 6 (2l + 1)iZj z(kr)Pztk, r), (2.7) 
z 

uz(q,kjr)p(<' ") 
(r 11/1 ) = (21T)-3/Z6 (2l + 1)iZ z K, r , 

~k Z r 
(2.8) 

jz(kr) is the usual spherical Bessel function, and Pz(k, r) 
is a Legendre polynomial. Also, G I (r, r') in Eq. (2. 6) 
is a radial Green's function satisfYi~ 

(~ + qZ - l(l + 1)\ G (r r') = - o(r - r') (2.9) 
drz rZ J z.q , , 

which on introducing into (2.6) gives the following in­
tegro-differential equation for u1(q, kj r): 

C~ + qZ -l(lr: 1»)u1(q, kj r) = (qZ - kZ)rj;(kr) 

+ 21J. 1'0 dr'vz(r,r')uz(q,kjr'). (2.10) 
liZ 0 

By substituting the expansion 

(It' It(q) Ik) = liZ _1_ 6 (2l + 1)t/(k',kjq)P/at,k') (2.11) 
21J. 2172 / 

into (2.4), it is straightforward to write the lth matrix 
element for a nonlocal potential as 

t/(k',kjq) = - 21J. 1«> dr 1«> dr' r'j/(k'r')v/r,r')u/(q,kjr). 
1Zz 0 0 (2.12) 
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From now on we consider only 1 = 0, since the wave­
function u I (q, k; r) cannot be obtained analytically for 
l '" 0 in case of the potential chosen for the core region. 
In particular, this is the nonlocal square well interac­
tion1 which is derived from a Green's function-type 
equation of the form 

having the solution 

f[2 V (3 
vo(r,r') = 2/-L si~ro 

(2.13) 

x (2.14) lSinh{3r sinhj3(r' - r 0) for 0 ~ r < r' ~ r 0' 

sinhj3(r - ro) sinhj3r' for 0 ~ r' < r ~ roo 

Here, ro is the range of the interaction and 1/{3 defines 
the range of non locality . It is of interest to note from 
(2.13) that in the limit of {3 -? OCJ the interaction becomes 
strictly local, whereas in the limit of (3 -? 0 it turns out 
to be purely separable. 1 Further, the parameter V 0 in 
(2.14) is defined such that it is positive for a repulsive 
interaction and negative for an attractive one. 1 

To study the features of the solution, we first consider 
the t matrix for the nonlocal square well only and then 
proceed to get the result for its combination with an 
outside local square well. 

A. The nonlocal square well 
The potential vo(r,r') in this case is given by (2.14) for 
o ~ r < r' ~ ro and vanishes outside the range ro, i.e., 

(2. 15) 

with V 1 being assumed the strength of a local square 
well outside r o. 

Using Eq. (2. 9) into (2.6), one easily gets the following 
integro-differential equation for the wavefunction 
uo(q,k;r): 

(~ + q2\ uo(q,k;r) 
dr 2 J 

= (q2 -k2)rjo(kr) + ~ 1"0 dr' vo(r,r')uo(q,k;r'). 
f[2 0 (2.16) 

Taking advantage of Eq. (2. 13) defining the nonlocal 
interaction, one then obtains, on applying the operator 
Lo = (d2/dr2) - {32 to both sides of (2.16), the following 
differential equation for U o (q, k; r): 

d4u d2uO __ 0 _ ({32 _ q2) __ - {32(q2 - V )u 
dr4 dr2 0 0 

= (k 2 - q2)(k 2 + (32)rjo(kr) (2.17) 

with the appropriate boundary conditions and where use 
has been made of 

Lofo(r) = (k 2 - q2)(k 2 + (32)rjo(kr) - V o(3Zuo(q, k; r), 
(2.18) 

where !o(r) stands for the right-hand side of (2.16). 

One notes here the mathematical flexibility of the non­
local interation used which allows the transformation 
from an integro-differential equation to a differential 
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equation for the wavefunction. ThiS, of course, is made 
possible through its relation to the Green's function of 
the second-order differential equation as seen from 
Eq. (2. 13). 

The solution of Eq. (2. 17) is then easily obtained: 

uo(q,k;r) = Aorjo(kr) + Bo sinhvT + Bo sinhv+r 

where 
for 0 ~ r ~ r o, 

A _ ___ (,-k2 __ -,q~2~)(k_2_+--",{3-,2 ) __ _ 

0- [k4 + k2«(3Z - q2) - (32(q2 - Vo)]' 

(2.19) 

(2.20) 

v± = (1/v'2){(j32 - q2) ± [({32 - q2) + 4{32(q2 - Vo]1/2}1/2. 

(2.21) 
Further, the wavefunction for r ~ ro is obtained by sub­
stituting (2.15) into (2.16) which yields the solution 

uo(q,k;r) = rjo(kr) + Btrh 6(0!1r ) 

for r ~ r o, (2.22) 

where h(j(O!lr) is a spherical Hankel function of the first 
kind and O! 1 = (q2 - V 1) 1/2. It is also assumed that 
ImO! 1 > 0 so that the correct boundary conditions are 
satisfied. 

Adopting the procedure given by Van Leeuven and 
Reiner,2 the (complex) coefficients B o, no, and Bt can 
be determined from the vanishing of the wavefunction 
at r = 0 and the continuity of its value and derivative 
at r = r o. This leads to the results B 0 = - B 0 and 

Bo = - (Ao -1)Xo1(j3O!i Iro)Xo(kO!llro), 
where 

( I) 
I
Uo({3;r) roh(j(O!lrO) I 

Xo (3O!I ro = 
o"ouo({3;r) 0rthO(O!' r 

(2.23) 

(2.24) 

withuo({3;r) = (sinhv+r + sinhv-r). Xo(kO!ilro) has a 
similar expression with k standing for rjo(kr). The 
symbol 0" denotes the differential d/ dr I" =" . 

o 0 

Inserting (2.19) and (2.23) into (2.12), one finally gets 
the following expression for the s-wave t matrix: 

V 0{32 
to (lz', k; q) =. (2 2) X 01 ( (3 O! t I r 0) 

slnh{3r 0 k + (3 

I

e d
1 I (2.25) 

(Ao - I)Xo(kO!i Iro) Xo({3O!llro) , 

where 

e = Ao [ sinkro [({3 coshj3rosinkro)- (k sinhj3rocoskr o)] 
kk' L({32 + k 2 ) 

_ sinh{3ro~Sin(k' -k)ro _ sin(k' + k)ro)] , 

2 (k' - k) (k' + k) 
(2. 26a) 

sink'r 0 . 
d1 = ({3 coshj3r 0 smhv-r 0 

k'({32 - v-2) 

- v- sinh{3ro coshv~ro) 

_ .!..(sinh({3 - v-)ro _ sinh({3 + v-)r o\ 

2 \ ({3 - v-) ({3 + v-) ") 

sinh{3r 0 (v+ coshv+r 0 sinkr 0) ) 

- (k 2 + v+ 2 k - (sinhv+r 0 coskr 0) 

1 (Sin(k - v-)ro _ sin(k + v-)ro) 
+- . 

2 (k - v-) (k + v-) 
(2. 26b) 



                                                                                                                                    

207 O. Zohni: Off· energy-shell t-matrix for local potentials 

One notes here that the off-shell t matrix in (2. 25) not 
only depends on the range roof the core region as it 
would for a hard-core potential,8 but also on the para­
meters U 0 and (3. Such dependence should manifest it­
self in multiparticle calculations whose sensitivity to 
off-shell effects connected with the "inner-core" nu­
clear interaction has recently aroused much interest. 7, 9 

The limits of the present t matrix for large k',k, and q2 
are of further interest. One finds 

lim to(k',kjq) 0, 
k'-l>OO 

(2.27) 

as 11k' and 

lim toW, kj q) = 0, (2.28) 
k .... oo 

as 11k which also follows from the symmetry character 
of to(k',k;q) under the interchange of k,k' as may be 
inspected from (2.25) and (2.26). The above two limits 
are similar to what is found in case of the hard-core 
t matrix.8 

As regards the limit for large q2, one notes from (2. 25) 
that the main dependence of to(k', k; q) on q2 is contained 
in the factor .40. According to (2.20), this factor ob­
viously exists for all values of q2. Hence, one concludes 
that the present t matrix remains finite as I q21 --> 00. 

This is in contrast to the hard-core t matrix which 
goes to 00 as Iq21--> 00. 8 

One may remark that the above features persist when 
an interaction outside the core is allowed. 
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B. Combination with an outside local square well 

The results of the preceding subsection are readily ex­
tended to the case of a nonlocal square well combined 
with an outside local square well. For the region 
o <s r < r' <s r 0' the interaction is again given by (2. 14). 
For the outer region, we have 

Vo(r,r') = (1f2/2,..L)6(r -r')U1 < 0 for ro <s r <s r 1 
(2.29) 

Vo(r,r') = (Jf2/ 2f..L)6(r -r')u2 = 0 for r ? rl, 

where r 0 is the range of the nonlocal core interaction, r 1 

is the range of the outer local square well, and the 

Ui(i == 1, 2) are the potential strengths. 

For the potential so defined, the integro-differential 
equation in (2.10) has the following solutions: 

uo(q,kjr) = Aorjo{kr) + Bo sinh'Fr + Bo sinhv+r, 

for 0 <s r <s r 0 

uo(q,kjr) = A1rjo(kr) + Btrh(j(O!,r) + Birho(a1r), 

for ro <s r .; r l , 

uo(q,k;r) = rjo(kr) + B~h(j(a2r), for r? r 1, 
(2.30) 

whereAo is given by (2.20),A 1 = (q2 - k 2 )/(q2 k 2 -
U 1) and 0:' 1 == (q2 - U 1)1/2 with i = 1,2. The (complex) 
coefficients Eo, Bo, B I, ord Bz are again determined from 
the matching of the wavefunctions. 

By proceeding in a similar way as in the previous sub­
section, the t matrix may then be expressed as 

e d 1 d2 d 3 

(Ao -A 1)ro,1o(kro) Uo{(3j r o) 

(Ao -A 1)orrjO(kr) 0r UO«(3jr) 
o 0 

- roh(j(a1r O) 

- °rrh O(O:'lr ) 
o 

- roho(a1r O) 

- or rhO(d1r) 
o 

(AI -l)Xo(ka~lrl) 0 Xo(ata 2Irl) Xo(ai~ Ir 1 ) 

where 

Do = Uo«(3j r o)[- oro rh(j(a,r)Xo(aiaZ1rl) 

+ or rhO(alr)XO(ata2Ir)] - Or u o«(3jr) 
o 0 

x[ - roh(j(alrO)Xo(aiazlr1) + roh"J0:'1rO)XO(atazlrl)]' 

with x(k',{3jr) given by 

x<k',{3jr) {sink'r(sinh,8(r -ro) sinh(3r 

- cosh{3(r - ro) sinh(3r] + sinh,8r sinkro}' (2.33) 

For the purpose of the comparison with the t matrix of 
a hard-core combined with a local square well,2.10 it 
is useful to consider the poles of the t matrix in (2.31) 
which arise from negative real q2 values defining bound 

J. Math. Phys., Vol. 14, No.2, February 1973 

(2.31) 

states for whiCh Do(r~, r 1; aI' a2;(3) vanishes. For the 
case such that U I < q < 0 which develops zeros for 
Do, one gets the following condition on the binding ener­
gies: 

X COS[(q2 - u l )1/2(r l -ro)] 

- (q2 - U1)1/2 sin[(q2 -UI )1/2(rl -rom. (2.34) 

Noting that the function uo«(3j r), which represents a solu­
tion for the nonlocal square well alone, should vanish in 
the limit of the hard core,11 one gets immediately the 
condition 

{(lq21)1/2 sin[(q2 _-UI )I/2(rl -ro)J + (q2 - U1 )1/2 

X COS[(q2 - U1)1/2(r - rom = 0, (2.35) 

which is exactly the condition found for the hard-core 
square well t matrix. 1 ° 
A further check is to find the parameters U 0' U 1> r 0' r l' 
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and {3 which give zero binding energy. Setting q2 = 0 in 
(2.34), one gets the condition 

cot[(- U )1/2(rl - r )] = (- U )1/2 0 0 ~ u ({3;r )J 
1 0 1 a u ({3 r) , 

"0 0 , 

which gives in the limit of the hard core 

Again, this is the same as that found in case of the 
hard-core square well. 10 

(2.36) 

(2.37) 

It is aimed in future work to study the features of the 
present t matrix as applied to multiparticle problems. 
Of particular interest in this respect is to compare the 
off-shell effects associated with the nonlocal-core t 
matrix against those associated with the hard-core t 
matrix. This would throw some light on the sensitivity 
of multiparticle calculations to effects connected with 
the inner-core nuclear interaction. 
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Space-times with a future projective infinity 
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We use a projective structure to make precise the concept of "future timelike infinity" for certain 
space-times. We apply our definitions to many exact and approximate solutions of the Einstein equations. 
Some physical restrictions are necessary. 

I. FUTURE PROJECTIVE INFINITY 

Penrose's elegant concept of lightlike conformal infinity 1 

is hard to apply to rest mass nonzero fields or to time­
like curves on a space-time. We shall give a definition 
intended to supplement Penrose's ideas. The long-range 
goal is to find ways of analyzing all the "information" 
that "leaks" into or out of a space-time through infinity 
or Singularities. The basic ideas of our treatment are 
due to Hawking and Geroch.2 

We will use the conventions of Misner, Thorne, and 
Wheeler3 and of Bishop and Goldberg. 4 M will be a 
connected, Hausdorff, real, four-dimensional Ck mani­
fold (k ~ 2) throughout. Greek indices will run over 
{O, 1, 2, 3} and Latin indices over {I, 2, 3}; the summation 
convention is used throughout. 

We review some facts about projective structures. 5•6 

Let rand r be Ck-2 symmetric linear connections on M. 
rand r are called projectively equivalent if every geo­
desic of r can be reparametrized so that it becomes a 
geodesic of r. In local coordinates rand r are projec­
tively equivalent iff 

r A - .!.(rp I5 A + rp I5 A) - -rA - .!.(-rp I5 A + -rp I5 A) (1) 
~v 5 I'P v VP)J - I'V 5 I'P v up I' • 

We shall now use projective structure to define "time­
like future infinity" as a 3-manifold for certain space­
times. Let ds 2 be a Ck-1 Lorentzian metric on M; let 
r be the Levi-Civita connection. Then (M,ds 2 ,r) is a 
space-time, assumed time-orientable and time-oriented 
henceforth. We shall say (M, ds 2 , r) has a boring future 
iff every future-inextendible timelike geodesic has 
infinite length. Unless explicitly stated otherwise, each 
space-time considered has a boring future. 

One can group the timelike geodesics into equivalence 
classes as follows. Let TM be the tangent bundle with 
projection 1T;P E TM will be denoted by p = (m, v) with 
m = 1TP EM and v E Mm' ThefutureF C TM isF = 
{p I p E TM, v timelike future-pointing}. Let Uk F be 
an open neighborhood of P E F. Let V k F be the open 
set swept out by moving U indefinitely toward the future 
along the geodesic flow. Then 1TV s M is an open set, 
called afuture thickening of the geodesic with initial 
point 1TP and initial tangent v. Two future-pointing time­
like geodesics y, y will be called eventually parallel if 
every future thickening of either contains a future 
thickening of the other. Eventual parallelism is an 
equivalence relation. We shall be interested in the case 
that a 3-manifold structure can be assigned to the set 
of equivalence classes, as follows. 

We shall say (M,ds 2 , r) has a Ck regular future projec­
tive infinity T iff there exists a Ck Hausdorff manifold­
with-boundary M and a Ck-2 symmetric connection r on 
M such that (a) T is the boundary of M; (b) M = M U T; 
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(c) r and riM are projectively equivalent; (d) for each 
P E F C TM the corresponding geodesic of r on M can 
be extended to intersect T; then at least one geodesic 
hits each point of T. It can be shown that when (M, r) 
exists the geodesiCS of r which hit anyone pOint of T 

correspond to the geodesics of precisely one equivalence 
class of eventually parallel geodesics: Two future­
pointing timelike geodesics intersect at future timelike 
infinity iff they are eventually parallel. 

Minkowski space-time has a regular future projective 
infinity. The following example does not. Take Minkow­
ski space-time with the usual coordinates and metrics 
ds 2 = dt 2 - dx 2 - dy 2 - dz 2 • Identify points (t,x ,y, z) == 
(t,x +k,y +l,z + m),where k,l,andm are arbitrary 
integers, to form M. M is thus R 1 X 51 X 51 X 51. Time 
orient (M, ds 2); then it has a boring future. It has no 
future projective infinity because every future thicken­
ing contains (A, co) x 51 X 51 X 51 for Some A, so a 3-
manifold T cannot exist. 

We now give examples which clarify somewhat the phy­
sical restrictions needed to insure that (M, ds 2 , r) has 
a regular future projective infinity. We take cosmolo­
gical constant A = 0 unless stated otherwise. The 
strategy in each example is the following. Choose local 
coordinates {xl'} such that xO = const is a plausible can­
didate for all or part of T. Define a r by 

r A = P - i(rp I5 A + rp I5 A) (2) 
I'V I'V I'P v up I' 

on the coordinate patch. Then try to extend r to T by 
continuity. r depends on the choice of coordinate patch, 
but when a (M, r) exists the projective structure is 
unique. 

II. HOMOGENEOUS COSMOLOGICAL MODELS 

We shall show that k ~ 0 Friedmann models have a 
regular future projective infinity. We shall state some 
results and conjectures on other homogeneous cos­
mological models. 

The Friedmann models 7 begin with a curvature sin­
gularity (big bang) in the past. Each k = + 1 (closed) 
model ends with a bang and does not have a boring 
future. By estimating the behavior of timelike geodesics 
one finds that each k ~ 0 model has a boring future; in 
fact, a k = - 1 model approaches Minkowski space­
time in the future. We now exhibit a regular future pro­
j ective infinity when k :5 O. 

Let (L,da2 ) be a Coo 3-dimensional Riemannian mani­
fold and (M, ds 2 ) a space-time with M = (0, ro) x Land 
ds 2 = R2(.,.,) (d.,.,2 - da2), where 0 < .,., < ro. For the k = 0 
Friedmann model (L,da2 ) is flat andR(.,.,) = .,.,2; for 
k = - 1, (L, da2 ) is of constant negative curvature and 
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R('rJ) = a(cosh1) - 1), where a> 0 is a constant. We work 
in a patch 1) E (1, co) to avoid the big bang. Let 

00 d1)' 
x o == X == 1 --. 

n R (1)') 

The integral exists and is finite for our examples; for 
k = 0, X = 1/1); for k == - 1, X == 2/[a(exp1) - 1)]. As 
1) -7 co, X -7 0+. For X(1) = 1) > X > 0, corresponding to 
1 < 1) < co, 

(3) 

(4) 

If {Xi} are local coordinates on L, then {x,x i } == {xI'} are 
local coordinates on M for X(1) = 1) > X> 0, and we 
simply attach X == 0 as the boundary T to M. 

Now define l' by Eq. (2). The only coefficients of rand 
I' which depend on X are 

r80 == 2R'/R, rJo == 0JR'/R, r?j = (da2 \jR'/R3, 

1'80=0, 1';0=0, ft = (da 2 )i}R'/R3, (5) 

where R' == dR/dX' In the k ~ 0 Friedmann models, 
R ' /R -7 co as X -7 0 but R' /R 3 -7 0; in fact, the la~er is 
a polynomial in X and hence is Coo at X = O. So r is Coo 
on M, and each of these models has a Coo regular future 
projective infinity. 

Some further results about cosmological models are: 
(a) Any p ~ p/3, k = - 1 Robertson-Walkers model has 
a regular future projective infinity by the construction 
just given; so does any p < p/3, k = 0 Robertson-Walker 
model. (b) Any Heckmann-Schlicking7 dust model has 
a regular future projective infinity. (c) To mention a 
case with positive cosmological constant, a de Sitter7 
space-time has a regular future projective infinity. 

Some unproved conj ectures about homogeneous cos­
mological models are: (a) A dust model which is 
"approximately Robertson-Walker" in the far future in 
the sense of MacCallum 9 has a boring future and a 
regular future projective infinity. (b) Kasner vacuum10 
and dust Kantowski-Sachsll models do not have a regu­
lar future projective infinity. 

III. BONDI-TOLMAN MODELS 

We next consider a broad subclass of Bondi-Tolman 
models, which are spherically symmetric dust solu­
tions.12.13 We shall be able to construct a regular 
future projective infinity only if the dust is asympto­
tically homogeneous in the future in a sense that will 
be made precise below. 

In the usual comoving coordinates ds 2 for these models 
has the form 

ds2 == dt2 -X2(r, t)dr2 - y2(r, t)d0 2. (6) 

Transformations r -7 j(r) and time translations t --> t + 
const maintain this form. One of the Einstein equations 
implies that (aY /ar)/X == W(r) is independimt of t. We 
shall be concerned only with solutions for which W(O) == 1, 
W'(r) > 0 if r > 0, and W(r) --> co as r -7 co. These condi­
tions insure that each mass shell r = const will start 
at a curvature singularity Y == 0 and expand to infinite 
area in the future instead of recollapsing to another 
singularity. Now fix the radial coordinate as v = 
[W2(r) _1]1/2, 0 ~ V < co. Then each solution that we 
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shall consider is speCified by two functions a (v) and 
to(v), assumed Coo for 0 ~ v < co. The metric and density 
p are given in terms of a parameter 1),0 < 1) < co: 

t = a(v) (sinh1) -1)) + to(v), 

Y(v, t) == va(v) (cosh1) - 1), 

X(v,t) == [(: + t-) Y -v (1 + 2;Vy!2 
(:'(t - to) + to)JfV 2 + 1)1/2, 

p(v, t) = 3(av 3),/(4rry3). 

(7) 

Here and below the prime' denotes a /av and c = G == 1. 
We require to ~ 0 and a(v) > 0, (av 3)' 2: O. Then each 
solution (7) has everywhere nonnegative density and 
has a boring future. 

The k = - 1 Friedmann models appear as a special case 
a == const, to = const. 

First, consider the subcase a == const. We shall con­
struct a regular future proj ective infinity. We work in 
the region 1) > 1 to avoid the initial singularity at t == to' 
Define coordinates X' u by 

x == 2/[a (exp1) - 1)], 

u ==V + (v 2 + 1)toX' 
(8) 

Then X -70 as t -7 co. Future projective infinity will be 
the surface X = O. Note that u == v + O(X) near X == O. 
Here and below O(j(x)) signifies a quantity vanishing 
at least as fast as f(x) as X -7 0 for fixed u. 

The metric in terms of X and u is 

where A, B , C, and Dare Coo functions of X and u near 
X = 0 satisfying 

A = 1 - 2 aX + 0(X2 ), 

C = (v 2 + 1)-1 + O(X)' 

D = v 2 + O(X)' 

(10) 

Now define I' through (2). One calculates that the r~v 
are Coo near X == O. So the models with a = const have a 
regular future projective infinity T at X == O. 

Now consider the case a '" const. The above construc­
tion fails. One can find coordinates such that (9) holds 
with A,B, C, and D at least Co at X == 0, and with A == 
1 - 2xj(u) + O(X2(lnX)2) for ~me Coo function f(v) 
determined by a(v). But now r~o = - (u 2 ~ l)f' /X + 
0(1), while the rest of the coefficients of rare 0(1). 
When a = const, then f == a and the singular term is 
absent. On the basis of further computations we con­
clude that it is very unlikely that the models with a '" 
const have a regular future proj ective infinity. The 
boundary T still exists, but r is not regular there. 

We interpret the restriction a = const as follows. In a 
model with a = const one finds that the boundary T is 
totally geodesic, and so inherits a unique prOjective 
structure 1'1 r from the projec!!:ve structure I' of space­
time. From (2), (9), and (10), rl r is determined by the 
nonvanishing part of the spatial metric in the surfaces 
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x = const at X = 0, which is 

(11) 

Because (7,da 2 ) is a space of constant curvature, (7, f'l T ) 

is proj ectively flat.5 In turn, da2 is determined by 1"1 T 

up to projective equivalence. We can then fix da 2 unique­
ly by a construction employing the metric structure 
of space-time. Thus 7 has an invariant volume element 

(u 2 + 1)-1/2u 2du dfL (12) 

From (7) we find that the total rest mass of a shell dv 
in space-time is 

dM = (3a/41T) (v 2 + 1)-1/2v 2dv dO (13) 

if a = const, and is of course independent of t. Compare 
(12) and (13), and recall that u and v agree at 7. We may 
say that if a = const, the density of rest mass is con­
stant on 7. Further, any attempt to put an inhomogeneous 
rest-mass density on 7 by taking a ;c const also destroys 
the regular projective structure there. So a Bondi­
Tolman space-time has a regular future projective 
infinity only if the rest mass is asymptotically homo­
geneous in the future in this sense. 

Further calculations show that if the cosmological con­
stant A > 0, a Bondi-Tolman space-time that expands 
to vanishing density and has a boring future always has 
a C2 regular future projective infinity. 

A coordinate patch covering a part of the Schwarz schild 
space-time can be obtained from (6) and (7) by taking 
to = 0, av 3 = const. This space-time does not have a 
boring future. However, from those timelike geodesics 
which escape to infinity with nonvanishing velocity we 
can fashion a partial boundary manifold 7. We can dis­
cuss the behavior of the space-time projective struc­
ture at 7. 

Since a ;c const, the space-time does not have a partial 
regular future projective infinity. However, there are 
coordinates X, u so that T lies at X = 0 and 

(14) 

and G(X'u) and all the rest of the rtu are Coo near X = O. 

In fact in a well-defined sense (7, r1r) is still totally 
geodesic and projectively flat. 

IV. DUST PERTURBATIONS OF k.;;; 0 FRIEDMANN 
MODELS 

We now argue that each member of a rather wide class 
of solutions of the dust Einstein equations has a regular 
future projective infinity. We shall use dust perturba­
tions of the k ~ 0 Friedmann models in the linear 
approximation. These perturbation models incorporate 
the Einstein equations into the analysis in a physically 
reasonable way. They are also rather general, exhibit­
ing arbitrary small density, rotational, and gravitational­
wave perturbations. We shall be able to construct a 
regular future projective infinity only if the rest mass 
is asymptotically homogeneous in the future. 

First we shall recall some results about these mod­
els. 14.15 The cases k = 0 and k = - 1 are similar in 
most respects, and we shall work with the former. The 
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outstanding difference between the two cases concerns 
one of the modes of density perturbation, which we shall 
call the "eighth mode." When k = 0 this mode is un­
stable at large times and the perturbation approxima­
tion fails. PhYSically, this mode may lead to gravita­
tional collapse, destroying the boring-future property. 
So we will not consider the eighth mode for k = O. When 
k = - 1, this mode is stable. 

In the notation of Sec. II the perturbed metric for k = 0 
is 

(15) 

where h/lu is the small perturbation. The coordinates 
are xo == .,., and xi. All tensor calculus below will be 
done with respect to the metric da2 = dxidxi. We take 
the usual gauge condition14 and give initial conditions 
on an initial hypersurface .,., = 1. When the perturbed 
Einstein equations are solved for h/l u ' eight functions 
of integration arise, as follows: 

(1 ) "Density perturbations" are governed by two scalar 
functions A(Xi),B(Xi). 

(2)"Dust rotations" are governed by a vector field 
Ci(x)) subject to Ci i = 0, determined by two functions of 
the x). ' 

(3)"Gravitational waves" are governed by a tensor field 
Di)(Xk ,.,.,) subject to Dij = Dji' Di),) = 0 = Dii' and (a 2/ 
a.,.,2 - "\I 2)Di = 0, determined by four functions of the 
Xk given at J = 1; call these functions dp(x i ), P = 1,2, 
3,4. 

Here and below ,i == a/ax i and "\1 2 == a 2/ax i ax i . Then 
h/l u is 

hoo = 0, 

hOi = - 2.,.,-2 "\I2Ci, 

hij = .,.,-3A,ij - (aijB + .,.,2B,i)/10) 

- (16.,.,-3 - 2.,.,-1"\12) (Ci,) + C),i) 

+ .,.,-1 (a/a.,.,) (.,.,-lDi). 

(16) 

As .,., -> ct:J all terms remain duly small except for that 
part containing B, which grows without bound. B is the 
eighth mode mentioned above, and we shall set B = O. 

When k = - 1 the results are similar, 15 except that the 
eighth mode is stable. 

One finds from the linearly perturbed geodesic equations 
that these models have a boring future. Now define 
X == Xo by (3) in order to adjoin X = 0 as the boundary 7 

and calculate I" through (2), exactly as in Sec. II. For 
the first seven modes the analysis is similar for k = 0 
and k = - 1, and we will discuss only the former case. 
Exactly as before the zeroth-order part of I" is Coo at 
X = O. The first-order terms containing A, Ci' or Di · 

are all proportional to Xn for integer n 2: 0, so the ~on­
tribution of A and Ci is Coo. 

Dij itself depends on X and it is necessary to put some 
restrictions on its initial conditions dp • Roughly, as one 
travels along an unperturbed dust line toward X = 0 
(.,., = <Xl) one sees "news" determining D i · coming in 
along the past light cone from increasin'gly remote 
reaches of the initial hypersurface. The news influ­
ences the connection; the leading contribution is r i . = 
i"\l2Di) + .. '. Even if the dp and all their deriv~tiJ~s 
are bounded in the initial hypersurface .,., = 1, r may 
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oscillate infinitely often as X ---7 0 and fail to have a 
limit. We, ther~ore, restrict the dp to have compact 
support. Then r will be Coo at X = O. It is likely that 
this restriction can be weakened. 

When k = - 1 and the eighth mode is present, the above 
construction fails. The boundary manifold T still exists, 
but r is singular there, with r i = O(X-1 ). A detailed 
analysis indicates that a regul£~ future projective 
infinity does not exist in this case. 

Thus each of these models has a regular future projec­
tive infinity, as long as the gravitational radiation falls 
off sufficiently rapidly in the initial hypersurface, and 
as long as the eighth mode is absent. When regular 
future projective infinity exists, it is always totally 
geodesic and projectively flat. The dust is always homo­
geneously distributed on T, judged by the invariant 
volume element of Sec. III. 

These results are consistent with those of Sec. III, since 
a perturbation a ~ const to a homogeneous Bondi-Tol­
man model is an eighth-mode perturbation. 

V. DISCUSSION 

Judging from the examples, the requirement that a dust 
or vacuum model with a boring future have a regular 
future projective infinity seems to impose two general 
restrictions: (1) In some sense, only a finite amount of 
gravitational radiation may be present. (2) The dis­
tribution of rest mass must be asymptotically homo­
geneous in the future. If either of these restrictions 
is violated, the boundary manifold T still generally 
exists, but the projective structure is not regular there. 
However, the nature of the singularity in the projective 
structure is quite different in the two cases. Roughly, if 
restriction (1) is violated, r can exhibit an arbitrarily 
ugly essential singularity. But if (2) is violated, r has 
only a single pole term as in (14) and is otherwise 
smooth. The requirement that the projective structure 
have only this mild form of singularity is nearly as 
useful and tractible as the requirement of complete 
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regularity that we have discussed here. We are at pre­
sent systematically investigating this case. 
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Closed-form Glauber cross sections in p-H and e - -H collisions. I· 
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The Glauber predicted integrated (over scattering angle) cross section for the elastic scattering of charged 
particles by ground state atomic hydrogen is evaluated in closed form. The asymptotic form of the Glauber 
cross section for large incident particle momenta is obtained and compared with the exact first Born 
approximation result. The present analytic results, together with previous numerical results, indicate that 
(neglecting exchange) the Glauber integrated elastic scattering cross section is well represented, for both 
incident electrons and incident protons, by aelastic=(7/3)v[2 rrao 2 at essentially all incident particle speeds Vi. 

I. INTRODUCTION 

The Glauber approximation 1 for scattering amplitudes 
has been applied, with considerable success, to the elas­
tic and inelastic scattering of electrons2- 4 and of pro­
tons5 by ground state atomic hydrogen. For these colli­
Sions, the Glauber apprOximation has been shown to be 
more useful than Born approximation for estimating 
differential and integrated (over scattering angle) cross 
sections. Recently, Thomas and Gerjuoy6 obtained 
closed form expressions for these Glauber amplitudes 
(always neglecting exchange); in particular, for the 
transitions 15 -7 15,25, 2p they found that the Glauber 
amplitudes reduce to simple sums of hypergeometric 
functions, which sums are relatively easy to compute. 
Although these analytic results considerably increase 
the practical utility of the Glauber approximation in 
charged particle-hydrogen atom collisions, a further 
integration over the allowed range of momentum trans­
fers still is required in order to obtain the integrated 
cross sections from the amplitudes. Heretofore, this 
integration has been done numerically; it would be a 
useful reduction of effort if these integrated cross 
sections could be expressed in closed form. Further­
more, in p + H(ls) collisions, Franco and Thomas5 found 
that the Born and Glauber predicted integrated elastic 
scattering cross sections are essentially indistinguish­
albe, even at moderately low incident proton speeds, 
despite the fact that the differential cross sections are 
quite dissimilar. 

Therefore, still neglecting exchange, we have reexamined 
the Glauber predicted cross section integral for the 
elastic scattering of arbitrary structureless charged 
particles by ground state atomic hydrogen. By exploiting 
the known relations between the generalized Legendre 
functions P u and the hypergeometric functions appearing 
in the elastic scattering amplitude expression obtained 
by Thomas and Gerjuoy,6 we have been able to re­
express the amplitude as a simple sum of Legendre 
functions. The ensuing cross section integral then re­
duces to a sum of known definite integrals. In particular, 
the elastic scattering cross section reduces to a com­
paratively simple sum of products of Legendre functions 
(or hypergeometric functions) which are as easy to 
compute as the amplitude itself. 

The contents of this paper now can be summarized as 
follows. In Sec. II we describe the reduction of the 
Glauber integrated elastic (15 -7 Is) scattering cross 
section, for arbitrary incident particle speeds. In Sec. III 
we obtain the asymptotic form of the cross section for 
large incident particle momenta and compare this re­
sult with the first Born approximation result. These 
latter results clearly show, for the incident proton 
energies considered by Franco and Thomas,5 that the 
Glauber and Born predicted elastic scattering cross 
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sections should be essentially indistinguishable. 

One well might expect that the techniques employed in 
this present paper also should be usable to evaluate 
the Glauber predicted cross sections for the excitation 
of atomic hydrogen. This is indeed the case: The closed 
form evaluation of the Glauber predicted cross sections 
for excitation of the n = 2 level will be presented in a 
future paper. 

II. THE GLAUBER 1s-1s ELASTIC SCATTERING 
CROSS SECTION 

A. The amplitude and cross section formulas 

We are concerned with the scattering of an arbitrary, 
structureless, spinless particle of charge Z by ground 
state atomic hydrogen. Let liKil liKf == /.LV idlV f define 
the initial and final momenta of the lllcident particle in 
the center of mass system, where /.L is the reduced 
mass of the incident particle-hydrogen atom pair, and 
v i and v j are, respectively, the initial and fiilal relative 
velocities of the colliding particles. Furthermore, de­
fine the momentum transfer vector q by 

q=Ki-Kr 

The Glauber approximation to the scattering amplitude, 
in the center of mass system, corresponding to elastic 
scattering from atomic hydrogen without exchange has 
been obtained in closed form by Thomas and Gerjuoy. 6, 7 

They found, ignoring the effects of particle indistinguish­
ability and spin, that the amplitude is given by 

F(ls -7 Is; q) = - iK i(a~r i(o~ 10(X, q») I A= 2/ a
o
' (1) 

where 

10 ("A, q) = - 4i1) r(1 + i1)r(1 - i1)X -2-2i~ q-2 +2 i~ 

X 2Fl(- iT) + 1, - i1) + 1; 1; (- X2/q 2». (2) 

In Eqs. (1) and (2), 1) == - Ze 2 /liv i' where viis the speed 
of the incident particle, ao is the Bohr radius, and the 
2Fl is the usual hypergeometric function. We also re­
mark that the amplitude was evaluated by taking the 
Glauber path integral along the direction ~ which is 
coplanar with Ki and Kp but is perpendicular to the 
momentum transfer q at each Kjfor given K

i
• 

The center of mass system differential cross section 
for the elastic scattering of the incident particle by 
ground state atomic hydrogen into the solid angle dn 
about the direction n f = (K/l)K f is obtained from the 
scattering amplitude in the usual way, namely, 

00(15 -) Is; K) K 
dfl = Kf \F(1s -7 Is; q) \2. , 

Copyright © 1973 by the American Institute of PhYSics 

(3) 
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Of course, for elastic scattering Kj = K i' In general, 
the Glauber amplitude for scattermg from initial state 
i to final state f depends upon the choice of quantization 
axis. However, since the initial and final states are s 
states in the case of present interest, at any given q 
(Le., at any given scattering angle) the quantity IF(ls-7 
Is; q) 12 in (3) will be independent of the choice of quan­
tization axis. Therefore, the integrated cross section 
now may be written 

o(ls -? Is; K) = jlF(ls -? Is; q) 12an, (4) 

where F(ls -? Is; q) is as given by Eqs. (1) and (2), and 
where the integration in Eq. (4) is over all directions 
of the outgoing particle. Taking advantage of the fact 
that 

q2 = 2K?(1 - cose), 

where e is the scattering angle in the center of mass 
system, the integrated cross section hp.~()m"'Cl 

1 2Ki 21f 
o(ls-.ls;Kj)=-l qdq1 d<pqIF(ls-)ls;q)12. (5) K? 0 0 

Since I F(ls -? Is; q) 12 is azimuthally symmetric, Eq. (5) 
reduces to 

271 2Ki 
o(ls -) Is; K;) = -1 q dq j F(ls -? Is; q) 12. (6) 

K? 0 

B. Simplification of the amplitude 

When Eq. (2) is used in Eq. (1) to generate the elastic 
scattering amplitude, one obtains an expression for 
F(ls -) Is; q) which involves a sum of two hypergeo­
metric functions. 6 Using this result for the amplitude 
in Eq. (6) leads to an expression for the integrated cross 
section containing definite integrals of products of hyper­
geometric functions, of a sort which usually are not re­
duced easily to closed form. However, for the integrals 
arising in the present paper, it turns out that reduction 
to closed form is possible by exploiting known relations 
between the hypergeometric function appearing in Eq. (2) 
and the Legendre functions. 

In particular we first note the relationS 

2Fl (a, b; a - b + 1; x) 

= r(a - b + 1) (1 - X)-b (- x) (b-a)/2p~baG ~ i) (7) 

which is valid provided x is real and - 00 < x < O. 

Via Eq. (7), the hypergeometric function appearing in 
Eq. (2) can be written as 

F (1- iT/ 1- irr 1'- A2) 2 1 , "2 q 

=(1 + A2)_1+ilJP (1- (A2Iq2)\ (8) 
q2 -l+i1) 1 + (A 2/q2)}' 

wherey == [1- (A2jq2)]/[1 + (i\2/q2)] satisfies - 1 ::; 
Y ::; 1 for all physical q2. The generating ftinction 
10(A, q) then becomes 

10(A, q) = - 4iT/ r(1 + iT/)r(l - iT/)q-4(i\2jq2)-1-i1J 

x(l + A2jq2)-1+i1l PI- (1- (i\2
j q2») (9a) 

- +'1) 1 + (i\2/q2) 

== - 4iT/r(1 + iT/)r(l - i1)q-4Mo(1); i\2jq2). (9b) 
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Equations (9a) and (9b) together define the quantity 
Mo(T/; (~N q2 n. Then, from Eq. (1), 

F(ls-? ls;q) = iKj(a~)3(iT/)r(1 + iT/)r(l- iT/)q-4 

x [a~ Mo (T/; ~:)J I A~2/ ao 

= iK i (a~) 3 (iT/)r(1 + iT/)r (1 - iT/)q-5 

x 2 Gl/2 :xMo (1); x~ Ix o4/{"o2 q 2) 

where x == A2/ q2 and q2 is fixed. But from Eqs. (9), 

-#-Mo(T/; x) = .£JX-l-i~ (1 + x)-1+i1]P 1 ' (1 - x)] 
uX aXL -+tr)1+x 

(lOa) 

(lOb) 

= x-I-in (1 + x)-1+in~P 1 . (1 - x) 
ax-+"II+x 

- x-2- i1j (1 + X)-2+ i1] [(1 + in) + 2x]P ,(1- x) (11) ./ -lHJ) 1 + x . 

If we now lety == (1- x)/(1 + x), then 1- y2 = 4xl(1 + x)2 
and 

However, 9 

d 
(1 - y2) dy P!J(y) = (v + ~.t}P~_b) - ry P~(y). 

Consequently, 

:XP-1+i1]G -: ~) =- ix(-l + i'17)[P_2+in (y)-yP-1+ i lJ(Y»); 

and therefore 

;xMO(T/;x) =- X-2- i1) (1 + x)-2+in{(1 + x) ~(-1 + iT/) 

x fP-2+i1](Y) -yP-1+i1J(Y)]+ [1 + i1) + 2X]P_l+in(y)} 

= - ~x-2-iJ)(1 + x)-l+i1][(_ 1 + iT/)P-2+ i 1) (y) 

+ (3 + iT/)P-1+ in (y)]. (12) 

Inserting Eq. (12) into (lOb), and using the relation lO 

P!:u-l (y) = Pt(y), 

we finally obtain the following expression for the elastic 
scattering amplitude: 

F(ls -) Is;q) = - iK j(iT/)r(l + iT/)r(l- i1)~(ao2) 

x {X1-i1l (1 + x)-I+i1l[(-l + iT/)P 1_i1j (y) + (3 + iT/)P_ i1j (y)]). 

(13) 

where x == 4/(a0
2q 2) andy == (1- xl/(l + x). It is the 

structure of Eq. (13) which permits us to evaluate the 
cross section integral (Eq. (6)] in closed form. 

C. Evaluation of the cross section integral 

We now use the result of the preceding subsection to 
evaluate the elastic scattering cross section in closed 
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form. Since [r(1 + i'17)r(1 - i1/)] is real, using Eq. (13) 
in Eq. (6) leads to 

(
ao\4 

o(1s...., IsjK i) = (21T)1/2[r(1 + i1/)r(1- i1/))2--X") 

12K; (x ~21 12 x 0 qdq ,l+ij [(-I+i1/)P1_;~(y)+(3+i1/)P.;~(Y)] , 

where x and yare as previously defined. However, 

1- x ao
2 q2 - 4 

y=--= 
1 + x ao2q2 + 4 

so that [ao
2x2/(1 + X)2] qdq = dy. Hence 

o(ls...., Is;K;) = 1Tao21/2[r(1 + i1/)r(1 - i1/»)22-3 

(14) 

x 1: dy 1[(- 1 + i1/)P I-in (y) + (3 + i1/)P_i~ (y)] 12 (15) 

with the upper limit (3 == (ao 2Ki 2 - 1)/(ao
2K i2 + 1). 

In order to expand the integrand of Eq. (15) we require 
the quantity [Pu(Y)]*' We first note when - 1 < y < 1 
and m is a nonnegative integer, that 11 

-m _(1.=1)"'/2 1 ( . .1 - Y). Pu (y)-I+y r(1+m)2F 1- V,v+l,l+m'-2-' 

(16a) 
moreover lO 

p[;'(y) = (- l)m[r(v + 1 + m)/r(v + 1- m)]p~m(y), 
(16b) 

so that 
r(v+1+m) (1- y)mI2 

p[;'(y) = (- 1)mr(v + 1- m)r(1 + m}\) + y 

x 2.fl (- v, v + 1; 1 + mj 1 -; y) . (16c) 

Therefore, since y is real it follows from (16a) and (16c) 
that 

(17) 

for arbitrary integers m. Therefore, Eq. (15) becomes 

a(15"'" 1sjK;) = 2-3 1/2[r(1 + i1/)r(l- i1/)J2JTa~ 
B 

x 11 dy[- (1- i1/)Pl-in(y) + (3 + i1/)P_i~(Y)] 

x [- (1 + i1/)P1+ in(y) + (3 - i1/)P;~(y)] (18) 

= 2-3 1/2[r(1 + i1/)r(I- i1/)J2lla5 
B 

x l1dy[(1 + 1/2)P1-i,f1+in- (3 + i1/)(1 + i1/)P~inP1+in 

- (1 - i1/)(3 - i1/)P1-i~Pi~ + (9 + 1/2)P_;nPi~]' (19) 

Now, however, definite integrals of products of Legendre 
functions PuP a can be evaluated in closed form. 12 In 
particular when - 1 < a"" y "" b < 1, 

t Pu(y)P a(y)dy = [(v- o)(v + 0 + 1)]-1(1 - y2) 
a /b 

X Wr[Pu(Y),Pa(y)] a (20a) 

= [(v- a)(v + a+ 1)]-1(1 _y2)1/2[PaP u1- PuPal]/:, 

(20b) 

where Wr[j, g] is the usual Wronskian determinant of 
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f and g. For convenience we also define the quantity 

W(v, OjY) == (1 - y2) Wr[P u' Po] 

= (l-y2)1/2[PaPul-PuPa1]. 

Therefore, via Eqs. (20) and (21), Eq. (19) becomes 

a(ls...., Is;K;) = 2-31Tao
2T)2[r(1 + i1/)r(1 - i1/)]2 

(21a) 

(21b) 

x (- (1 ~ 1/2)W(1 _ i'n 1 + i11'Y) _ (9 + 1/2)W(_ i1/ + i'Yl'Y) 
611/ '11'11 211/ ,'11 

+ (3 + i1/)(1 + iT)".,(_. 1 +.. . ) 
2(1 + 2i1/) W 11/, l1/,y 

(1 - i1/)(3 - i1/) .. • ) I B 
- 2(1- 2i1/) W(1 - 11/, 11/,y yo-I' (22) 

Equation (22) can be simplified immediately. Since Eq. 
(17) holds, it is clear from Eq. (21b) that 

W(v, v*iY) == (1 - y2)1/2[Pu~} - {pu*Pu 1}*] 

(23a) 

Moreover, it is also true from Eq. (17) and (21b) that 

W(I-i1/, i1/jY) = - W(i1), 1 -i1/;y) 

= - W*(- i1/, 1 + i1/jY). (23b) 

Hence Eq. (22) becomes 

o(ls...., IsjK i) = 2-31Ta~1/2[r(1 + i1)r(1 - i1)]2 

x [- (1 + 1/
2

)(1 - y2)l/2 Im[P . pI . ] 
3T) l+1n l-'n 

_ (9 + 1/
2

) (1 _y2)1/2 Im[P. pI ] 
1/ ~ -~ 

(
3 + i1/)(1 + i1/) . . )~J 1/3 + Re 1 + 2i1/ W(- 11/, 1 + 11/jy 'J -1' (24) 

The quantity W(- i1/, 1 + i1/iY) can be further simplified. 
From Eq. (21a) 

But, as we noted previously, P1 + in = P-2 - in • However, 9 

so that 

P~2-i~(Y) 
= (- 1 - i 1/)-1[(- 2i1/- I)yP-l-i~ (y) - (- iT)P_i~(Y)]' 

Therefore 

W(- i1/, 1 + i1/jY) = (1- y2) 

x w)p 1 + 2i1/ P -~ P ] L -i~' 1 + i1/ Y -l-i~ 1 + i1/ -i~ 

= (1 - 2) 1 + 2!1/ WrlP. ] 
Y 1 + 11/ -,~ 

- ( _ 2) 1 + 2iT) { ]} 
- 1 Y 1 + i1/ P-i~P-1-in + y Wr[P_i~' P-1-i~ . 
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However P-1 - iTj == Pin' so that, again using Eq. (21a) we 
have 

W(- ill, 1 + i1];Y) == 11\2;~ {(I - y 2)P_i"P+i1) 

+ yW(- i1], + i1]iY)} 

== 1 + 2~1] {(I _ 2) Ip , 12 
1 + t1] Y + 11) 

+ 2iy(1-y2)1/2 Im[P, P1,]} (25) 'n -ll) • 

We therefore find, since y is real, that 

R (3 + i1])(l + i1])".,(_. 1 + . . )~ 
e \' 1 + 2in w HI, t1],Y'J 

= 3(1- y2) Ip i1) 12 - 21] Y (1- y2)112 Im[Pi1)P~il)]' 

and Eq. (24) reduces to 

cr(1s ~ 1sjK;) == 2-3 1TOo27)2[r(1 + i7)r(1 - i7)]2 

x 1- (1 + 7)2)(1_y2)1/2 Im[P1 . P 11_, ] 
( 37) ,+ "1 '1) 

_ r9 + 1]2(1 + 2Y)](1_y2)1/2 Im[P, pl, ) 
1] ~ -~ 

+ 3(1-y2)lp. 12tllll. 
In \-1 (26) 

The term in braces in Eq. (26) can be evaluated without 
any real difficulty at the lower limit y == - 1 (for fixed 
7), although it is necessary to be careful. Using Eq. (I6c) 
the product (1 - y2)1/2 PvP~ becomes 

(1 - Y 2)1/2pvP~ = - (1 - y 2)1/2 2F1 (- V, 1 + V; 1; 1 ;- y) 

r(v* + 2)(1- y)1/2 (* "'~) 
x r (v*) 1 + Y 2Fl \- V , 1 + v j 2; 2 • (27) 

Near y = - 1 the hypergeometric functions appearing in 
Eq. (27) are given by their standard analytic continua­
tions. In particular, 13 

2Fl(- v, 1 + V; 1; i(1- y) -[r<- v)r(1 + v)]-1[2lt(1) 

- lj;(-v)- lj;(1 + v) - In[i(1 + y )] 

+ OB(I + y) Ina(1 + y)J} (28a) 

where the psi function has its usual definition14 
lj;(z) = (d/dz) lnr(z); and13 

2Fl (- v*, 1 + v"'; 2; i(1 - y )~[r(- v* + I)r(v* + 2)]-1 

x O{(i 1 + y) In[i(1 + y))}. (28b) 

Combining Eqs. (28) with (27) we find that for y ~ - 1 

(1 2)1/2P pI ~ - (1 - y) 
- Y v 1)* r(- v)r(I + v)r(v*)r(1 - v*) 

x [2lj;(1) - lj;(- v) -lj;(1 + v) - In(I ~ Y~J 
(1- y) 

= r(v)r(1 - v)r(v*)r(I - v*) 

x ~lj;(1) -lj;(- v) -lj;(1 + v) - In~I ; y) ] . (29) 
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Although Eq. (29) contains a logarithmic divergence at 
y = - 1, this poses no problem since in Eq. (26) we only 
require the imaginary part of Eq. (29) at y = - 1. In 
particular, since r(v)r(1 - v)r(v*)r(l - v*) is real, 

2 lim Im[(I- y2)1/2pvPJ".] 
y--1 lr<v)r(1 - v) 12 

x Im[lj;(- v) + lj;(1 + v)]. (30) 

In Eq. (26) we are required to evaluate Eq. (30) for v = 
i1] and v == 1 + i7); we use the relation14 

lj;(z + 1) = lj;(z) +(I/z) 

and its corollary 

lj;(z -1) == 1Jt(z) - [l/(z -1)]. 

In particular, then, when v = iTJ 

Im[(1- y 2)1/2p. Pl. ]/' == - 2 
,'If -'ll y=-l Ir(iTJ)r(1 _ i1]) 12 

x Im[ lj;(- i7) + ~1 + iTJ)]. 

But 

1Jt(- i1]) + 1Jt(1 + iTJ) :::; lj;t- iTJ) + lj;(iTJ) + (l/iTJ). 

Since14 

Therefore 

Im[(I-y2)1/2PinP~in]IY=_1 =/ni1])r~ _ iTJ)12(~)' 
When v == 1 + i1], Eq. (31) becomes 

Im[(I- y 2)1/2p pI ]1 - - 2 
l+in I-in y=-l- 1r(1 + i1])r(- i17) /2 

x Im[ lj;(- 1 - iT) + 1/1(2 + iTJ)] 

(31) 

= - 2 1m {1Jt(- iTJ)+_I_+lj;(iTJ)+_1_+~), 
Inl - iTJ)r(iTJ) /2 \ 1 + iT) 1 + i17 in 

and finally, after some manipulation, 

Im[U- y 2)1/2P1+
i P t-i]1 == 2 (1+31)2). 
n 1) y=-1 IniTJ)r(1- i1]) 12(1 + TJ2)TJ 

(32) 
The quantity (1 - y 2) lPi 12 appearing in Eq. (26) can be 
evaluated at y "" - 1 in 1 Similar fashion. Again using 
Eq. (16c), 

(1- y2) lPin l2 = (1- y2) 12F1(- iTJ, 1 + i1]; l;i(1 - y)) 12. 

When y rv - 1, we again apply Eq. (28a) and find that 

(1 - Y 2) lPin 12 ~ (1 + y)(1 - y) I[r<- iTJ)r(1 + iTJ)]-1 

x {2lj;(1) - 1Jt(- i1]) 1Jt(I + iTJ) -In[~(1 + y)]}12; 

therefore 

lim (1 
y--1 

Y 2) lP. 12 :::; O. 
'Il 

(33) 

We now are in a position to evaluate the term in braces 
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in Eq. (26) at the lower limit y = - 1; we denote this 
term by {l 1_1' Using Eq. (31), (32), and (33) we find that 
at y = - 1 

{} 1-1 = 2 (_ 1 + 31)2 _ 9 + 1)2\ 
1;2 Ir(i1))r (1 - i1)) 12 3 J 

2 (28) (34) 
= - 1)2 Ir(i1))r(1 - i1)) 12 '3 . 

However, 1)2 1r(i1))r(l- i1)) 12 = Ir(1 + i1))r(1 - i1))12 and 
{ } 1~1 = { } III - { } 1_1' 

Therefore inserting Eq.(34) into Eq. (26) and collecting 
terms we find that (neglecting exchange) the Glauber 
elastic scattering cross section for arbitrary structure­
less charged particles incident upon ground state atomic 
hydrogen is given by 

a(ls -7 IsjKi ) = 1rao
21)2 [~ + 2-3[r(1 + i1))r(1 - i1))]2 

x (3(1 - (32) IF ((3) 12 _ (1 - (32)1/2 
,~ 1) 

III. THE ASYMPTOTIC FORM OF a{1s ~ 15; Ki) AT 
LARGE K; 

Equation (35) above is our desired closed form result 
for any K i • However, it is desirable to have the asymp­
totic form of (35) for large Ki' the situation so often 
encountered in practice. For the purpose of obtaining 
this asymptotic form, it is convenient to introduce atomic 
units. We also stress at this time thatJ(i == J.l iV large noes 
not mean that 1) == - zlt' i is necessarily small. 

The Legendre functions PiJ'«(3) appearing in Eq. (35) are 
evaluated via Eq. (16c) using their equivalent represen­
tation in terms of the hypergeometric functions. Since 
(3 = \Ki2 - 1)/ (K? + 1), when y = (3 in Eq. (16c), the 
argument of the hypergeometric function becomes 
(1 - (3)/2 = (1 + K?)-l. When Ki is large, therefore, to 
obtain the asymptotic expansion of [(1 - (32) m/2 Pum (J3)] 
we simply expand the hypergeometric functions in (16c) 
in the usual series, retaining only the first few terms. 
In particular,15 if Ki» 1 and X == (1 + Ki2)-1, 

P)(3) == 2Fl (-v, 1 + Vj 1; X) ~1 + (- v)(v + 1)x 

+ i(- v)(- v + l)(v + l)(v + 2)X2 ... , 

and 

(36a) 

(1 - (32 )1/2p}({3) = - v(v + 1) (1 - (3)2Fl (- v, V + 1; 2; X) 

~ - v(v + 1)2X{1 + t(- v)(v + l)X 

+ 12(- v)(- v + 1)(v + 1)(v + 2)X2 + "'}. (36b) 

Therefore, using Eqs. (36), 

(1 - (32)1/2Pv ((3)p}*((3) ~ - v*(1 + v*)2 X{1 - v(v + 1)x 

- *v(1- v)(v + 1)(v + 2)x2 + ... J 
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1 
x {I - tv*(1 +11*) X - i2 v*(1 + v*)(1 - 11*) 

)( (2 + v*)X2 + ... } 

= - v*(1 + v*)2 X{1 - v(v + 1)X - tv*(1 + II*)X 

+ t Iv(1 + v) 12x2 - iv(1 + v)(1 - v)(v + 2)X2 

- -!? v*(1 + v*)(1 - v*)(2 + v*)X2 + O(X3 )}. (37) 

In Eq. (35) we reqUire the imaginary part of Eq. (37). 
Since (1 -v)(v + 2) = 2 - II(V + 1), and X is real we find 
that 

Im(l - (32)1/2PvPl;*~ 2X Im{- v*(l + v*) + t[v*(l + v*))2x 

- t Iv(1 + v) 1
2v*(1 + v*)X2 - i Iv(1 + v) 12vlv + 1)X2 

+ A[v*(1 + v*)J2[2 - v*(1 + v*)lx2}. (38) 

We now explicitly construct the imaginary part of the 
term in braces in Eq. (38) via ImA = - ti(A - A *). 
Equation (38) then becomes, after some algebraic mani­
pulation, 

Im(l- (32)1/2p,?;*~ - iX[v(1 + v) - v*(1 + v*)J 

x {I - t[v(l + v) + v*(1 + v*)lx 

+ t Iv(1 + v) 12X2 - ~[v(1 + II) + v*(1 + v*)lx2 

+ ~lv(1 + v) - v*(1 + v*)]2x2 + O(X3 )}. 

And therefore, to third order in X. 

(39) 

Im(1- (32)1/2PvP~* ~ 2X Im[vl1 + v)]{1 - Re[vl1 + v)lx 

+ ~ Iv(1 + v) 12X2 - t[Re[v(1+v)J + {Im[v(1 + v)])2lx2}. (40) 

Hence, when v == 11), 

Im(l- (32)1/2PinP\'1 ~ 2X 11i.l + 1)2 X + t1)2(1 + 1)2)X2}j 
(41a) 

and, when v == 1 + 11), 

Im(l- (32)1/2Pl';nPt_in~ 2X(31)){1 - (2 _1)2)X 

+ h 2l1)4 - !1)2 + j n. (41b) 

We still require, however, the asymptotic form of Ip)2 
when K; is large. We apply Eq. (36a), to obtain 

(1 - (3) IPv ({3) 12 = 2\ I :,Jl (- ",1 + v; 1; xl 12 

~ 2X[1 - v(1 + v)X - iv(1 + v)(1 - v)(2 + II)X2 + ... J 

x [1 - v*(1 + v*)X - h*(1 + v*)(1 - v*)(2 + v*)X2 + ... ]. 

Again, after some algebraic manipulation, we find that to 
order X3 

(1 - (3) IPv ({3) 12~ 2x{1 - 2 Re[v(1 + lI)lx + Iv(1 + v) 12x2 

- Re[v(1 + v)jX2 + t Re(II(1 + v)2X2}. (42) 

Hence, when v = i1), 

(43) 

The asymptotic form for a(1s -7 1sjKi), when Ki is large 
now can be obtained directly from Eq. (35) using Eqs. 
(41) and (43) together with the fact that (3 = 1 - 2X' We 
ultimately find that, to third order in X == (1 + K;2) 1, 
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a(ls -7 Is;Kj) is given, in atomic units, by 

a(ls -7 Is;Kj) ~ 1T'TJ2{; - Ir(1 + i1/)r(l- i1/ 12 f(1 + 1/
2

) 
. Ll +K? 

+ (1 - 1/2)2 + 1 /1 + 13 2 5 4 + 1 6)]} 
(I + K?)2 (I + K?)3 \3 "61/ - 31/ '21/ , 

(44) 

where K j == J.J. v j and 1/ ==.- Z/ v j in (a.u.). Equation (44) is 
to be compared with the exact first Born result (again 
in a.u.) 

a B(ls-71s;Kj) 

== 1/
211(f- (1 +IK?)- (1 +IKj2 )2- 3(1 :Kj2)3) (45) 

If 11/ 1 is sufficiently small so that in Eq. (44) we may 
expand Ir (1 + i1/)r (1 - i1/) 12 in powers of 1/2, then 16 

We see immediately that for small 11/ 1 the asymptotic 
form of the Glauber elastic scattering cross section 
contains the exact Born cross section, plus terms which 
vanish as 1/ -7 O. ThiS, of course, is not unexpected since 
the first term in the expansion of the Glauber amplitude 
in powers of 1/ iS2.17 just the first Born amplitude. 

In fact, if Vj is so large that K j » 1 and 1/« 1, then we 
can obtain from Eq. (44) the asymptotic expansion of 
a(ls -7 Is;Kj) in powers of v j - 2 • We find that when v; is 
large in this sense, the elastic scattering cross section 
is given to order v j -6 by 

a(ls -7 Is;K.) ~ 111/2 {1 __ 1_ + !t. (113 _ 1) + O(V .-6)}. 
I 3 K.2 K.2 3 ' , , 

(46) 

The equivalent Born asymptotic expansion is obtained 
by letting Kj -7 00 in Eq. (45). We see immediately that 
the Born and Glauber elastic cross sections are equal 
to order v ;-4. However, the Born cross section contains 
no term proportional to v j -6; indeed, to order v j -6 the 
Glauber cross section is strictly greater than the Born. 

We also observe that as long as K j » 1 and 1/ ~ 1, the 
terms involving Ir(1 + i1/)r(1 - i1/) 12 in Eq. (44) always 
are « 1, because Ir(1 + i1/)r(1 - i1/) 12 :s 1 for all 1/. 
Therefore, for incident protons (where J.L == M,/2» 1 in 
atomic units) a (Is -7 Is) predicted by Eq. (44) will be 
essentially identical to a B(ls -7 Is) from Eq. (45), for 
all v· > 1 in atomic units. Moreover, in this v; ~ 1 
rang~ for protons, it follows from Eqs. (44) or (45) that 

(47) 

Equation (47) and the foregoing remarks-all inferred 
from our exact analytic treatment-now are seen to 
confirm the results obtained by Franco and Thomas5 

via numeral integration, and plotted as Fig. 1 of their 

J. Math. Phys., Vol. 14, No.2, February 1973 

paper. That the equality of the Born and Glauber elastic 
cross sections at v j > ~ is not a priori obvious is made 
manifest by the fact that the corresponding Born and 
Glauber angular distributions are markedly different; 
the equality is obtained only after integrating the differ­
ential cross sections over all angles. 

Indeed, at 1/ ~ v j ~ 1, the Glauber and Born amplitudes 
are not expected to be the same, because in this range 
dropping the higher-order terms (in powers of 1/) in 
the expansion of the Glauber amplitude is not justified. 
Therefore, it is even more surprising that for incident 
electrons the exact Glauber formula (35) reduces to 
the Simple Born high energy limit (47) at all incident 
electron energies 2: 1 eV, as can be seen by comparing 
Fig. 1 of Franc02 (again obtained by numerical integra­
tion) with Eq. (47). That in e--H(ls) elastic scattering 
Eq. (35) is well apprOximated by Eq. (47) at energies 
2: 1 eV has not been shown by us analytically at all 
energies; but it has been shown analytically by one of 
us (Thomas) that for electrons Eq. (47) is within a per­
cent of Eq, (35) in the limit Vi -70, and at the value of 
v j corresponding to K j == 1. We add that for incident 
protons the analysis shows that Eqs. (35) and (47) are 
identical to extremely high accuracy at v j -7 0 and Kj == 1. 
Thus, in view of the foregOing results, we are led to the 
remarkable conclusion that there is good reason to 
believe the Glauber predicted a(ls -7 Is;Kj ) is well re­
presented by the very Simple Eq. (47) for all incident 
electron and proton energies. 
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The dependence of the energy levels and the value of the matrix elements of the momentum and position 
operators of a quantum anharmonic oscillator are studied as functions of the quantum number and the 
strength of the anharmonic term. The principal technique employed is the construction of a canonical 
transformation. 

I. INTRODUCTION 

There is no procedure for dealing systematically with 
even the simplest problems in one-dimensional quantum 
mechanics, e.g., an anharmonic oscillator. The textbook 
techniques, although elegant when they are applied to the 
specific problems for which they were designed, are 
inappropriate when they are applied in different situa­
tions.! There is nontheless a structure and logic to the 
way in which the eigenvalue problems of quantum 
mechanics resolve themselves. It is my purpose in 
treating the anharmonic oscillator to make a prelimi­
nary step in the development of a general theory of 
quantum mechanical problems. Although much of what 
I do is intuitive and ad hoc in character, I believe that 
the ideas presented here can be developed into a com­
prehensive set of procedures. In the present paper I 
will alternate between detailed calculations for the 
anharmonic oscillator and a discussion of an arbitrary 
potential. 

Before beginning the exposition, it is worth commenting 
on the very old WKB method2 and the very new sum­
mation techniques 3 for treating similar problems. In 
many ways the ideas that I develop are close to the 
spirit of the WKB method. I shall emphasize the impor­
tance of determining the wavefunctions correctly for 
large quantum numbers. The advantage that my approach 
has is that it is easier to relate to the usual procedures 
of quantum theory than are the WKB methods and that 
I can more readily generalize to problems in several 
dimensions. I treat the same class of problems that 
is currently being discussed by Pade series and Borel 
summation. The numerical results to be obtained by 
these methods is probably superior to that which I have 
attained. These techniques are, however, limited to deal­
ing with a Single level at a time, usually the ground 
state energy. They do not naturally yield the matrix 
elements of operators nor do they give inSight into the 
dependence of an energy level on the coupling para­
meter. 

The problem to be treated is specified by the Hamil­
tonian H 

H = !(p2 + x 2) + ;\X4. (1 ) 

It is natural at first to consider this problem as a per­
turbation Ax4 to the harmonic OSCillator Hamiltonian H 0' 

If A is small, the expansion of the eigenvalues and eigen­
functions of H in terms of those of H 0 with coefficients 
that are power series in A is a standard procedure. It 
will be worthwhile to indicate why this attempt must fail. 
From the simplest pOint of view the perturbation is 
never uniformly small. IfAx2 is greater than one, then 
the perturbation is large, and there are always values of 
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x for which Ax2 is larger than one. Alternatively the 
matrix elements of the perturbation are approximately 
equal to An 2 while those of Hoare approximately equal 
to n, where n is either the row or column index of the 
energy matrix. Again for a sufficiently large value of 
n, A n is greater than one and the perturbation will be 
larger than the unperturbed energy. Since in high orders 
of perturbation theory any state will be connected to 
states with large values of n, there is a strong sugges­
tion that the perturbation series will diverge. One may 
also consider the behavior of the perturbation series 
if the sign of A is reversed to again indicate that the 
series in A is divergent. There is a final qualitative 
behavior that we will note when we study the asymptotic 
form of the wave functions. 

The relation between the behavior of an operator for 
large x and the behavior of its matrix elements for 
large values of n is determined. An operator that be­
haves like xn for large values of x will have matrix 
elements that behave like n n /2 for large values of n. 
More generally if A (x, p) is a function that behaves like 
x np ~ for large values of x and p, then its matrix elements 
will behave like n(n+ 1;)/2 for large values of n. 4 

These considerations suggest that, in order to separate 
a Hamiltonian H into an unperturbed portion H and a 
perturbation V, it is essential that Hand H be~ave iden­
tically for large values of x and p or equiv~lently that 
the matrix elements of Hand H 0 be identical for large 
values of n. The effect of such a procedure if it could 
be carried through would be to reduce the matrix that 
is to be diagonalized when H is expanded in the eigen­
functions of H 0 to a matrix whose only nonvanishing 
off-diagonal elements occur for small finite values of n. 
The diagonalization of this residual finite matrix can be 
regarded as a technical problem rather than a problem 
in prinCiple. 

The result suggested above is probably too ambitious. 
As a practicable first step I have been able to choose 
Ho so that (H/Ho) = 0(1) for large values of x andp. 
This will be seen to imply that the off-diagonal matrix 
elements are not large compared to the diagonal ones 
for large values of n. The actual result is better than 
this. 

It is useful and simple to consider the asymptotic be­
havior of the wavefunction .v (x) for large values of x. 
This is a standard technique for mathematicians and 
physicists. 5 It is most easily carried through by writing 
.v(x) = exp(- ax s ). If this expression is substituted into 
the Schrodinger equation, the result is 

- !s2a2x2s-2 + s(s - l)ax s-2 + !x2 + Ax4 = E. 

In order that the leading terms cancel out, it is neces­
sary that s = 3 and 9 a2 = 2A. Since the wavefunction 
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must vanish for x = ± co, we see that the required asymp­
totic form is 

w(x) = exp[- (2,\/a) 1/2 IxI 3]. 

In a general situation it is no more difficult to deter­
mine the asymptotic behavior of a wavefunction; the 
difficult point is to construct a complete orthornormal 
set having the specified behavior. In the present case 
there is a slight additional complication because of the 
appearance of the "unnatural" function I x I 3 in the ex­
ponent. This makes the asymptotic form a poor choice 
even for so elementary a use as a trial ground state for 
a variational calculation. The dubious character of the 
perturbation procedure is again indicated by the differ­
ence in the asymptotic character of the wavefunctions. 
The harmonic oscillator wavefunctions are quadratic 
in x and the anharmonic oscillator functions are cubic 
in x. It is unreasonable to try to synthesize a completely 
different kind of function exp(- x 3 ) from exp(- x 2 ) 

rather than to start ab initio with functions having the 
correct asymptotic behavior. 

One method for producing a new set of functions from s 
given set is to simply consider w[g(x)] instead of >J!(x). 
If >J!n(x) is a complete orthonormal set of functions, 

J w~(x)wn(x)dx = limn' 

then wm [g(x)][g'(x»)1/2 is also a complete orthonormal 
set: 

as can easily be checked by the change of variables y = 
g(x). If the wn(x) are the harmonic oscillator wavefunc­
tions andg(x) = O(x3/2 ), we will have produced a set of 
functions that behaves appropriately for large x. 

In the succeeding sections this procedure is shown to 
be a canonical or unitary transformation, and the trans­
formed Hamiltonian is calculated. It is shown that to a 
certain extent the Hamiltonian is made diagonal in the 
leading terms in n. The type of canonical transforma­
tion required to carry the diagonalization further is 
considered. 

II. THE CANONICAL TRANSFORMATION 

The observation that the set of functions >J! n(g)(g')1/2 is 
a complete orthonormal set of functions implies the 
existence of a unitary or canonical transformation con­
necting this set of functions with the set w n' The matrix 
element Uab of this transformation is given by the integ­
ral 

(2) 

For most choices of g and w this integral will be diffi­
cult to evaluate, while for many applications knowledge 
of the transformed operators x' = U+ xU and P' = U+pU 
will be adequate and turns out to be quite simple to ob­
tain. 

The calculation of the transformed operators is made 
from the formulas 

and 

P;b = f w;[g(x)][g' (x»)1 !2P>V b [g(x)][g'(x)]1!2dx. 
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The change of variable y = g(x), where x = f(y), gives 
the result that 

X;b = J w;(y)f(y)>J!b(y)dy, 

P;b = J w;(y) [f'(y)]-1!2p[f'(y)]-1!2 >Vb(y)dy. 

From the form of these formulas one may read off 
directly the transformation formulas 

x' = f(x), P' = [j'(x)]-1!2P[j'(x)]-1!2. (3) 

By direct calculation of the commutator of P' and x' it 
may be seen that [p', x'] = - i so that the transformation 
is canonical. If the symbols in (3) are interpreted as 
ordinary variables rather than as operators, the Pois­
son bracket of the variables P' and x' may be calculated 
with respect to the variables p and x. This Poisson 
bracket is unity so that the transformation (3) is also a 
classical canonical transformation. The generating func­
tion F of this classical canonical transformation is 
F(P',x) = P'f(x). In general classical canonical trans­
formations are not quantum canonical transformations 
and vice versa. 6 The unitary operator U whose matrix 
elements are defined by (2) has the property 

U+ xU = x' = f(x), 

The formulas (2) and (3) permit the transformation of 
the Hamiltonian H(x,p) by the unitary operator U to be 
carried out, and this gives the result 

U+H(x ,p)U = H(x' ,p')= H{f(x ),[f'(x)]-1!2p[j'(x)]-1!2}. (4) 

In general the Hamiltonian has the form H = tp2 + V(x). 
The transformation of the potential energy is V[f(x)] 
while the transformation of the kinetic energy is given 
by 

tp'2 = Hf'(x)]-2P 2 + i[j'(x)]-3j"(x)p + Hf'(x)]-3j"'(x) 

- Hf'(xll- 4 fj"(x)]2. (5) 

The next step is the determination of the complete ortho­
normal set w and the function g that are appropriate for 
the anharmonic oscillator problem. 

III. THE CHOICE OF THE CANONICAL 
TRANSFORMATION 

The only complete orthonormal set appropriate to the 
problem of the anharmonic oscillator are the harmonic 
oscillator wave functions. In Sec. I it was noted that 
asymptotically the wavefunctions of the anharmonic 
oscillator behave like exp(- Q' I x I 3). In order for this 
to be true, if we use the harmonic OSCillator functions 
for the set >V n' the function g(x) must behave like x 3 !2 
for large x while the inverse function f(x) must behave 
like x2/3. Both f and g should be even functions of x. 
I originally tried to use f(x) = x2/3. This is inadequate 
because the derivatives of f introduced singularities at 
the origin. For very small values of x the harmonic 
part of the potential is dominant, and so one may try to 
construct a function that behaves like x at the origin and 
x 2 !3 for large values of x. The combinations that I tried 
were of the form 

f(x) = x(Q' Ixi e- 1 !3 + p)/(yix\e + 6) 

with e> t, and 

f(x) = Q'xe- flx2 + yx 2 / 3 (1 - e- ox2 ). 
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These functions lead to quite complicated expressions 
for the Hamiltonian and to intractable integrals. 

I then speculated on letting the Hamiltonian itself gene­
rate a suitable transformation function f. Here the tech­
nique approaches the WKB method quite closely. By 
using f(x) = x2/3 I determined that the terms in the 
kinetic energy that arise from the noncommutability of 
p and x give rise to terms of lower order in the quantum 
number than the term [f'(X)]-2p2. This is easy to see if 
one takes f'(x) ~ x-1/3 , f"(x) ~ x-4/3 , and f"'(x) ~ x- 7/3. 
The terms that arise from the commutator are [f'(x)l3 x 
f"(x)P, which is asymptotically like x-1/3p, [f'(x)] 4 x 
[f"(x)]2,and [j'(x)]-3f"'(x) which both behave likex-4/3 . 
Since the dependence on the quantum number n of an 
operator is related to the operators dependence on x 
and p for large values of x and p by the remarks in Sec. 
I and the detailed calculations in Appendix A, I decided 
to neglect these terms temporarily. In the same spirit 
I dropped the harmonic term compared to the quartic 
term. I was then left with the operator 

Hf'(x)]-2p2 + Aj4(x). 

My final arguments were that p2 and x 2 were asympto­
tically equal in magnitude but opposite in sign so that I 
could replace the expression above by 

- t[f'(X)]-2x 2 + Af4(x). 

In order to obtain cancellation between the kinetic and 
potential energy portions of the Hamiltonian I should 
set this expression equal to zero as a differential equa­
tion. The solution for the equation is 

f(x) = Cl'X 2/3 . 

Since I had already seen that x2/3 is an inappropriate 
function, I included the harmonic part of the potential, 
the next most significant term in the differential equa­
tion. The differential equation becomes 

- t[f'(x)]-2x 2 + tJ2(x) + Aj4(x) = O. 

The solution of this equation is readily obtained and is 

f(x) =A[(1 + Bx2)2/3 -1]1/2. 

This function proves satisfactory both at zero and in­
finity and it is reasonably simple to use. The trans­
formation generated by this function will be used to 
study the anharmonic oscillator. The abbreviation 

u = (1 + Bx2 )1/3 

will prove to be useful. 

The derivatives of f that are necessary for the calcu­
lation of the transformed Hamiltonian are given by 

f'(x) = tABxu-1(u 2 -1)-1/2, 

f"(x) = - ~AB(u2 - 1)-3/2(u + u-1 - 4u-2 + 2u-4), 

f"'(x) = 1..AB2x (u + 1)-5/2(u _1)-1/2 
'<,7 

x (4u-2 + 8u-3 + 22u-4 - 4u- 5 - 32u- 6 - 16zc7). 

The transformed Hamiltonian is found by using these 
expressions for the derivatives of f and the expressions 
(4) and (5) for H. The result is 

H = 9 (u4 _ u2)p2 + 3 (u4 + u2 - 4u + 2u-1)P 
8A2B 2x 2 4iA 2B 2x 3 

3u 3 + 9u2 + 28u + 12 - 48u-1 - 64u- 2 - 36u-3 - 12u-4 (6) + + tA2(u 2 - 1) + AA4(u 4 - 2u 2 + 1). 
32A(u 5 + 3u 4 + 5u 3 + 5u 2 + 3u + 1) 

In the subsequent sections we choose the constants A 
and B in the transformation and evaluate the diagonal 
matrix elements of H. 

IV. THE DIAGONAL MATRIX ELEMENTS OF THE 
HAMIL TONIAN 

The diagonal matrix elements of H are evaluated with 
the help of the generating function h(A, B, A, z) which 
is defined by: 

h(A,B,A,Z) =6 zn(nJHJn). 

The operator H has the form H = hI (x)p2 + ih2(x)P + 
h 3 (x). The treatment of each of the three terms is 
slightly different and they will be considered separate­
ly. The sums are evaluated with the help of Mehler's 
formula 7 : 

'\' znHn(x)Hn(Y) 1 ([2XYZ - (x 2 + Y 2)Z2]) 
LJ ---'---- = (1 - z2)-1 2 exp , 

2nn! (1 - z2) 
(7) 

which is used with x set equal to y to give 

6 n = (1 - z2)-1/2 exp --- , znH2(x) (2X 2Z ) 

2nn! (1 + z) 

and differentiated once with respect to Y and with y set 
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equal to x to give 

6 = (1 - Z2)-1/2 -- exp -- . 
znHn(x)Hn+1 (x) 2x (2X2Z ) 

2nn! 1 + z (1 + z) 

The evaluation of the contribution of the term hI (x)p2 to 
the generating function proceeds by replacing p2 by (p2 + 
x 2 ) - x 2 , Since the states J n) are eigenstates of the 
harmonic oscillator,(p2 +x2)Jn) = (2n + I)Jn). Inside 
the sum that defines the generating function n may be 
replaced by z d/dz. With the use of these two substi­
tutions the calculation of the first part of the generating 
function may be reduced to an integral in a routine way. 
The result is 

-1/2 
= 1T Jdy e- y2h1[(1 +z)1/2y /(I-z)1/2] 

2(1 + z )(1 - Z)2 

x [(1 + z2) - (1 - z)2y 2]. 

The variable of integration y is related to x by 
(l-z) 1/2x/(1 +z)1/2 =y. 

The contribution of the term ih 2 (x)p to the generating 
function is calculated by using p J n) = - i(n/2)1/2J n -1) + 
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i[(n + 1)/2]1/2In + 1). The use of the differentiated ver­
sion of the Mehler formula gives 

L) zn(n I ih 2(x)P I n) 

= [11(1 - z2)]-1/2 J dy e-
y2yh 2[(1 + z)1/2y/(I-z)1/2]. 

The final term h 3 (x) gives the result 

L) zn(n I h3(x) In) 
=11-1/2(1-z)-1 J dy e-

y2h3[(1 +z)1/2y/(1-z)1/2]. 

In some of the integrals that occur in the definitions 
of the generating function there appear to be singulari­
ties at the origin caused by terms like x- 2 and x-4 • A 
brief inspection will show that all of these terms are 
cancelled by zeros of equivalent order in the numera­
tor. The apparently singular factors are to be removed 
from the integrals through integration by parts. The 
portion of the integrand of the form dx x-4 and dx x-2 
are to be replaced by - td(x-3) and - d(x-1) respec­
tively. When these partial integrations are carried out 
all of the integrals may be expressed in terms of the 
function G(s, e) defined by 

G(s, e) = 100 

dx e-X2 (1 + ex2)s. 
-00 

The evaluation and the properties of G are studied in 
Appendix D. The function G is closely related to the 
confluent hypergeometric function. 

In terms of G(s, e) the generating function h{A,B, A,Z) 
is given by 

11 1/2h(A,B,A,z) 

= {9[(1 - z)2 + 2(1 + z2)]!8A2B2(1 - z)(1 + z)2} 

x [G(t, e) - G(~, e)] 
+ [3(1 + z2)/2A2B(1 - z)2(1 + z)] 

x [2G(t,e)-G(-t,e)] 

+ [3(1 - z)/2A2B2(1 + z)2] 

x [G(~, e) + G(t, e) - 4G(t, e) + 2G(- t, e)] 

- [1/A2B(1 + z)] 

x [2G(t,e) +G(-t,e)-2G(-t,e)-G(-},e)] 

+ [1/32A2(1 - z)] (3G(- t, e) + 13G(-1, e) 
00 

+ L) [- (42 + 90t)G«- 5 - 6t)/3,e) 
t=o 

+ 4G«- 6 - 6 t)/3, e) 

+ (66 + 90 t) G«- 7 - 6 t)/3, e) 

- (83 + 90t)G«- 8 - 6t)/3,e) + (115 + 90t) 

x G{(- 10 - 6 t)/3, e)]) 

+ [A2/2(1 - z)] [G(2/3, e) - G(O, e)] 

+ [AA 4/(1 - z )][G(~, e) - 2G(t, e) + G(O, e)]. 

The results of Appendix D are used to expand the gene­
rating function h in a power series in z. The leading 
terms for large values of n are 

(n IHln) = [21/3r(~)/24111/2r(~)] 

x [27A-2B-2/3 + 40AA4B4/3]n4/3 + O(n2/3 ). 

This part of the matrix element that behaves like n 4/3 

is only a function of AB 1/3. If it is varied with respect 
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to this parameter the stationary value occurs for ABl/3 = 
(27/80A)1/6. This is the first relation used to determine 
the constants A and B. 

There is another significance to this relation. To the 
leading order in n the matrix element (n I H I n + 2) 
vanishes if this value for ABl/3 is chosen. The easiest 
way to show this result is to observe that the leading 
powers in n come from the leading terms in Xapb, that 
is, for the largest values of a + b. In the Hamiltonian 
these terms are 

H = (~){ABl/3)-2x2/3p2 + A(ABl/3)4x 8/3. (8) 

The matrix element (nlHln + 2) is given in this approxi­
mation by 

(nlHln + 2) = ~(ABl/3)-2(nlx2/3In + 2) 

+ A[{ABl/3)4 - j{ABl/3)-2] (nlx8/3 ln + 2), (9) 

where p2 has been written as p2 + x 2 - x 2. If the re­
sults of Appendix A are used to evaluate this expres­
sion it is easily shown to be zero. The detailed calcu­
lation is carried out in the next section. 

Since it is reasonable to expect that the matrix elements 
of H, (a IHI b) decrease with increasing values of I a - b I, 
it is reassuring to see that choosing the parameter 
ABl/3 in the transformation in the manner speCified 
above to make the diagonal element (n I H I n) stationary 
also has the effect of making the immediate and pre­
sumably the largest off-diagonal vanish. 

Another relation between A and B is required to com­
plete the specification of the transformation. Since the 
form of the transformation was partially dictated by 
the behavior for large values of x and partially by the 
behavior near the origin, it is reasonable to choose the 
parameters A and B in the same fashion. Thus we find 
the remaining relation between A and B to control the 
transformation near the origin. 

Again there are two methods of doing this that give sub­
stantially the same result. If we regard the transformed 
ground state 'if 0 

'ifo = 11-1/4[g'(x)P/2 exp[-g2(x)], 

where g is the function inverse to j; as the ground state 
of some potential V we can solve the Schrodinger equa­
tion for this potential: 

V - E = 'if o/2'if o' 

A relation between the parameters A and B can be 
chosen so that V behaves like t x 2 near the origin. This 
relation is 

A-4(9/4B2 - 27/8B - 1) = 1. (10) 

Alternatively one may require that the function f behave 
like x for small values of x. This gives the relation: 

9/4A4B2 = 1, 

which agrees with the preceding result for small values 
of A. It would be useful to minimize the ground state 
energy but this has proved to be too difficult. 

The choices of the parameters is then given by ABl/3 = 
(27/80A)1/6 and (10). This completely specifies the 
transformation. 
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V. THE OFF·DIAGONAL MATRIX ELEMENTS OF H 

In this section the off-diagonal matrix elements of H 
are calculated to leading order. We start from the 
formulas (8) and (9), by substituting 2s for 2. This 
gives the result 

(nIH\n + 2s> = ~(ABl/3)-2(n + 2s)(n\x2/3 jn + 2s) 

+ A(ABl/3)4 - HAB1/3)-2(nlx 8 / 3 jn + 2s). 

If the results of Appendix A are used to estimate this 
result, it follows that 

(nlHln + 2s) =::; {9n4/321/3r(~)r(i)/4r[(~) - s]r[(~) + sJ} 

x (AB1/3)-2(1 - s2). 

The matrix element decreases like s-5/3 as s increases. 
This rate of decrease is not fast enough to prevent the 
sum of the absolute values of the off-diagonal matrix 
elements from being approximately equal to the value 
of the diagonal element. The results of this calculation 
are in this sense less satisfying than the heuristic cal­
culation presented in Appendix C. 

VI. A SUBGROUP OF THE GROUP OF CANONICAL 
TRANSFORMATIONS 

In this section a subgroup of the group of all possible 
canonical or unitary transformations is described. The 
transformation that brings the Hamiltonian (6) to a 
diagonal form belongs to this subgroup. Since our 
operators x and p have the correct asymptotic behavior 
for large values of x and p, any canonical transforma­
tion that tends to make the Hamiltonian more diagonal 
must belong to the subgroup which leaves the asympto­
tic behavior unaltered. That is, if P = P(x,p) and X=::; 
X(x,p) are a new set of operators in the sense of Appen­
dix II, then 

lim P(x,P) = lim X(x,p) = 1. 
%-)-00 P x~oo X 
p-+oo p-+<X) 

It is easy to give an example of a P or an X that has 
this behavior, but it is difficult to exhibit a nontrivial 
canonical pair. For example, 

satisfies the above relation. I do not know whether or 
not there is an X that is conjugate to this P. A conjec­
ture that has some reasonable features is that 

are appropriate forms for the transformations of this 
type with relations between a and (3 speCified by (Bl). 

VII. CONCLUSIONS 
In the anharmonic oscillator problem there are two 
parameters: the coupling constant A and the quantum 
number n. The present treatment determines with some 
success the leading dependence of the dynamical vari­
ables x and p and the energy J.evels on these parameters 
and the relations between them. In this way the struc­
ture of the solution of this problem are illustrated. 
The operators P and x satisfy the canonical commuta­
tion relationship [P, xl = - itl. Hence, if x behaves like 
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i\-C<, P must behave like i\+C<. Since p 2 and i\x4 must have 
the same asymptotic behavior in A, it follows that 2a 
and 1 - 4a are equal so that a ~. Since the energy 
behaves like p2 or A x4, it depends on A 1/3. Finally since 
p = mi == m[H,xJ the dependence of p like i\1/6, H like 
i\1/3, and x like i\-1/6 are compatible. 

In the same way the n dependence of p2 and x4 must be 
the same from the form of the Hamiltonian. The com­
mutator implies that the product px is of order n so that 
p ==n2/3 and x =nl/3 ,andH ==n4/3. Sincepj. == (Ej-E.) 
x., the n dependence of these quantities is virified. ) 

'J 

Finally the asymptotic dependence of the wavefunction \.[I 

on the coordinate x follows from the n dependence of 
these operators. The solution of a one-diITIensional prob­
lem is of value only in so far as it can suggest the solu­
tion of problems involving coupled degrees of freedom. 
The only direct generalization of the present result 
would be to a set of identical oscillators coupled in an 
SOn invariant fashion so that the problem could be re­
duced to a one-diITIensional one. If the potential is not 
invariant under sOn, it still appears that a "radial" co­
ordinate should be introduced and the attempt made to 
relate the energy primarily to a principal quantum 
number. 

APPENDIX A: THE MATRIX ELEMENTS OF THE 
POWERS OF THE COORDINATE OPERATOR 

In this appendix the matrix elements (nlxlJin + s) will 
be calculated for an arbitrary 1) > - 1. The approach 
taken is to evaluate the generating function 

g(1),S,z)=.0z n(niXl)ln +s)[(n +s)12s/n!J1/2. 

If the matrix element is written as an integral and the 
order of summation and integration are exchanged the 
generating function is given by: 

7f 1/2g == J dx e-x \lJ .0znHn(x)Hn+s(x)/2nn!. 

From Mehler's formula it is possible to develop an 
expression for the sum. Both sides of (7) are to be 
differentiated s times with respect to y. If the formula 
H:"(y) 2mHm _1(y) is taken into account, the left-hand 
side becomes 

In order to deal with the right-hand side, we observe 
that it has the form (1 - z2)-1/2 exp(A + By + Cy2), It 
is easy to prove by induction the lemma 

(~)s exp(A +By +Cy2)=.0 s![2(B +Cy)]s-2r(2c)r. 
dy (s - 2r)!r! 2r 

If the appropriate expressions for A, B, and Care 
entered, it follows that 

(d/dy)s exp(-x2z 2 + 2xzy _y2z2)/(1-z2)] 

== [(-1)rs!2 sz s(x -zy)s-2r/(s - 2r)! 

x r! 2r(1 - z2)s-, J. 
If we set y = x in the differentiated version of Mehler's 
formula, it becomes 

.0 znHn(x)Hn+s(x) 

2nn! 
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(-1)rs!2sxs-2r 
= (1-z2)-1/2L; -----------_ 

(s - 2r)!r! 22r(1 + z)s-r(l - z)r 

(
2X2Z) 

exp -- . 
1 + z 

With this result the expression for g becomes 

17 1/2g=(1 _ z2)-1/2L; (-l)rs! 2s 

(s - 2r)!22r(1 + z)s-r(l-z)r 

x J dx xij+s-2r exp [_X2 G : ;jJ 
The integration can easily be carried out to give 

17 1/ 22"=(1 + z)(ij-s)/2(1 - z)-(ij+s+2)/22s 

'" (- l)rs! q (1) + s - 2r + 1)/2] 
Xu . 

(s - 2r)!r!2' 

In carrying out the integration it was assumed that x ij 
was an even or odd function of x depending on whether 
s is an even or odd integer, that is, x ij+S -2r is an even 
function of x. 

In evaluating the sum in the above expression it is con­
venient to factor out a term r[(1) + l)/2J{r[(1) + 2)/2]} 
from the sum depending on whether s is even (odd). The 
remaining sum is a polynomial in 1) of degree (~s - ~). 
It can easily be shown that this polynomial vanishes for 
1) = 0,2,4, ... 1 S - 2 (1) = 1,3,5, ... , s - 2) so that the 
polynomial is of the form Asn(1) - 2)(1) - 4) ... (1) - s + 2) 
(Bs (1) - 1)(1) - 3) ... (1) - s + 2». The constants are 
determined by evaluating the polynomial at 1) = s. The 

1 1 
result is that As = 2- s/2 , Bs = 22"-2"s. If the results are 
now combined, it follows that the sum is given by 

L; (-l)rslr[(1) + s - 2r + 1)/2] 

(s - 2r)!r!22r 

r(~1) + l)r(~1) + ~) 

r(~1) - ~s + 1) 

With this result the generating function becomes 

1 1 1 1 
171/2g = (1 +z)2"ij-2"S(1-z)-2"ij-2"s-12s r(t1) + l)r(~1) + ~)/ 

x r(h - ~s + 1). 

The matrix elements are found by expanding this func­
tion in powers of z. For our purposes this is most 
easily carried through as follows: 

The exponent 1 + 1) will always be a number of the order 
of one for our purposes while the exponent - ! 1) - !s - 1 
will be an arbitrary negative number. The expansion is 
given by 

(1 + z)1+ij(1 - z2)-~ij-~S-1 = L; zn L; 

r(1) + 2)r(q + ~1) + ~s + 1) 

x r(1) + 2 -n + 2q)r(h + h + l)q!(n - 2q)!' 

For values of n that are large compared to s the sum 
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over q may be approximated, and this gives 
1 1 

(1 + z)1+ij(l - z2)-2"ij-2"s-1 

r(n + 1 + ~1) + ~s) 
= L; (z2n + z2n+1)2ij. 

n! r (1 + ~ 1) + ~s) 

The generating function g has the expansion 

r(~1) + l)r(t1) + ~) 
g(1),S,z) = 2s +ij -------­

r(~1) - ~s + 1) 

r(n + 1 + ~1) + is) 
xL; (z2n+z2n+1). 

n!r(l + i1) + ts) 

The matrix elements can be read off from this expres­
sion: 

nlxijln + s) = --...,..----,:-----( 
2sr(i1) + l)r(i1) + i) ( n! )1/2 

r(t1) - is + 1) (n + s)12s 

r([in] + 1 + ~1) + is)2ij 
x -~----~--~--

[in]! r(l + t1) + ts) 

For n » s we can use Stirling's formula to yield 

(nlxijln + s) = (2n)ij/2r(~1) + l)r(t1) + i)/ 

r(i1) - is + l)r(l + t1) + is). 

For values of s that are large compared to one but small 
compared ton,this matrix element decreases like s-1-ij. 

APPENDIX B: CANONICAL TRANSFORMATIONS 

The commutator [pm, xn] is given by 

[p,xFm Ini 
[pm,xn] = L; xn-tpm-t. 

t=1 tl (m - t)I (n - t)I 

This relation can easily be established by induction. 
From this it follows that 

= L; [P,x]! • at(xspr)at(xnpm) _ a t(xSpr) a t(xnpm) " 
tl . ax t apt apt ax t . 

In this formula the operators x and p must be rearranged 
in a normal order with all of the x's moved to the left 
and all of the p's moved to the right without regard to 
their noncommutability. Hence the notation: " 

If one considers the transformation p ---7 P = P(x, p) and 
x ---7 X = X(x ,p), then the commutator 

[p,xF.atxatp atxatp. 
(P,X] = '6 -t-! -. ax t apt - apt ax t . (Bl) 

To derive this formula, it is imagined that X and Pare 
expanded in power series in x and p and that the pre­
vious result is used to compute the commutator. The 
classical analog is the firs.t term in the series which is 
the zero order approximation in Planck's constant. 
This equation shows that many transformations that are 
canonical classically are not in quantum mechanically 
and vice versa. 
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APPENDIX C: SOME HEURISTIC CONSIDERATIONS and 

I have made some attempts to directly construct opera­
tors x and p that satisfy the canonical commutation 
rules and diagonalize H the anharmonic oscillator 
Hamiltonian (1). The attempts are not successful, but 
they are instructive. The simplest attempt is 

0 11/3 0 0 0 ... 

P/3 0 2113 0 O· " 

\2x = QI 0 2113 0 3 113 0'" 

0 0 31/3 0 4113 ... 

0 0 0 41/3 0" . 

~ .. _. __ ... ____ . ____ ~~ ._~,,:,-,_~ '--'-'--'-'-" ••..... '~-,~_. __ ..J 

1 0 

0 1 

i[p,xJ=QI{3 ~(21/312/3 _ 11/322/3 

0 12/3 0 0 0 ... 

- 12/3 0 22/3 0 0 .. · 

/'X ip ,.~ (3 0 _ 22/3 0 32 /3 0·· . 

0 0 - 32/3 0 4213 ••. 

0 0 0 _ 42/3 0·· . 
................................. 

The commutator is 

-i(211312/3 - 11/322/3) 0 

0 - ;(3 113 22 /3 - 2] 1332/3) ... 

1 0 

0 i(3l/322/3 - 211332/3) 0 1 

0 0 

The off-diagonal element is asymptotically ~QI{3. The 
anharmonic oscillator Hamiltonian calculated with these 
approximations for p and x is given by 

Hrnn = (a 4'\/4)[(m - 3)(111 - 2)(rn -1)m JI/36rn4.n 

+ {(Ql4'\/4)(m - 1)rn 1 / 3[(m - 2)2/3 + (/11 - 1)2/3 

+ m 2/3 + (m + 1)2/3J + (Ql2/4)[(m - 1)m)1/3 

-- ({32/4)[(m -1)mj2 13}6 rn _2.n 

+ {(,\Ql4/4)[m2/3(m - 1)2/3 

+ m 4/3 + 2m2/3(m + 1)2/3 

+ (m + 1)4/3 + (m + 1)2/3(/11 + 2)2/3J 

+ (Ql2/4)[m 2 /3 + (m + 1)2/3] + ({32/4)[m 4/3 

+ (m + 1)4/3]}6 m+ 1.n 

+ terms in 6 m +2 .n and 6m +4 ,n necessary to make H 
Hermitian. 

The choice a{3 = 1 is obvious to make the commutator 
as nearly correct as possible. In order to make H as 
diagonal as possible for large values of the quantum 
number, the portion of H that is proportional to n4/3 
6rn - 2 ,n should be set equal to zero. This gives 

or 
a = (1/2,\)116. 

The leading term in the remaining off-diagonal element 
which is proportional to n4/36m_4.n is then 

,\Ql4 = t(A/4)1/3. 

The leading diagonal element is: 

~(32 + !a 4,\ = iQl 4'\(1/QI6,\ + 3) = t(A/4)1/3(2 + 3) 

= %(A/4 )1/3. 

Since there are two off-diagonal elements in any row or 
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~ (41 1332 13 _ 31 /342/3) 0 

1- ----
column, the ratio of the off-diagonal elements to the 
diagonal element is t. The numerical value of the diago­
nal matrix element is 1. 6'\ 1/3. 

Very marked improvements can be made in this solu­
tion by making the matrices p and x more complicated. 
The next simplest form would be to consider the matrix 
p to have terms proportional to 6m • 3.n' This example 
gives the energy proportional to 2. 22,\ 1/3 essentially 
the WKB result. If the nonvanishing terms proportional 
to 6 3 are included in the matrix for x, the energy 
becom~e'~ 2.19'\ 1/3, exactly the WKB value, while the 
ratio of the off-diagonal to the diagonal element falls to 
0.05. 

There are a number of difficulties to be overcome be­
fore a satisfactory method can emerge from these con­
siderations. The problem being treated in all these 
instances is really ~p2 + '\x 4 • In the large quantum 
number approximation which is all that has been treated 
there is no contribution from the harmonic part of the 
potential. In the earlier work this part of the potential 
was included through the form of the function J. To do 
this in the present approach without destroying the sim­
pliCity of the method may be difficult. Further, two 
approximations must be made simultaneously as the 
matrices for x and p are developed. On the one hand, 
there are terms of order lower than n 4 /3 with coeffi­
cients that may be large and on the other there are 
terms proportional to 114/3 with small coefficients. How 
these two types of terms can be eliminated simultane­
ously and compatibly is the obstacle to giving a rigorous 
account of the anharmonic oscillator by this technique. 

APPENDIX D: THE FUNCTION G(s, 8) 

The function G (s, e) is defined by the integral 

G(s, e) = J e-X2 (1 + ex 2 )sdx. 

By differentiating under the integral sign with respect 
to e it can be seen that G satisfies the differential equa­
tion 

2e 2G" + [2 + (3 - 2s)e]G' - sG = O. (01) 
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The equation can be solved in a series of descending 
powers of e. If s is not half of an integer, there are two 
separate series that solve the equation, and the general 
solution is 

G(s, e) == a(s)es.6 r(n - s)8-n 
n!r(n-s+~) 

+ 13 (s)8-1 12 .6 r(n + ~)8-n (D2) 
n!r(n+s+f) 

The coefficients a and 13 may be evaluated by consider­
ing the integral for large values of e. If s > - ~, the 
dominant term is a (s)8 s r(- s )/r(- s - ~), while, if 
s < ~,the dominant term is f3(s)8-1/2 rW/r(s + f). In 
each of these regions it is easy to work out the asymp­
totic form of the integral. For s < - ~ make the change 
of variable ex2 == t/(1 - t). The integral becomes 

e- 1 / 2 j t(1/2)-1(1 - t)-(1/2)-s-1 exp[- t/e(1 - t)]dt. 

For large values of e the exponential is approximately 
one and it may be neglected. The asymptotic value of G 
when s < - ~ is then given by 

lim G(s,e) = e-1/2B(~,- ~ - s) 
8-+00 

= e-1/2rm r(- ~ - s)/r) - s), s < -~. 

For s > ~ and large values of e we may simply replace 
1 + ex2 by ex2, and G becomes 

lim G(s, e) == esr(s + ~), s > -~. 
8-+00 

From these results it follows that 

a(s) == - f3(s) = r(s + ~)r(- s + ~)/r(- s). (D3) 

For a (s) the result is true for s > - ~ while for 13 (s) 
the result is true for s < -~. We shall now show that G 
satisfies a mixed difference-differential equation in s 
and e and a difference equation in s and that these values 
of a and 13 are true for all values of s. 

By differentiating under the integral sign in the defini­
tion of G the two mixed differential-difference equations 

2e 2G'(s) + (e + 2)G(s) - 2G(s + 1) == 0 (D4) 
and 

eG'(s + 1) + (s + 1)G(s) - (s + 1)G(s + 1) == 0 

can be deduced. 

By substituting the series solution (13) for G in these 
equations it follows that 

(s + 1)a(s) == a(s + 1), (s + 1)f3(s) == f3(s + 1). 

The expressions (D3) for a(s) and f3(s) satisfy these 
equations so the values for O! (s) and (3 (s) are correct for 
all values of s and the integral is represented by the 
sum (D2). The series are uniformly and absolutely con­
vergent for all real positive values of e. The function 
G is singular at 8 = 0 although the value at e = 0 is 
just 1Tl/2. 

The differential equation (D1) may be deduced by elimi­
nating the terms dependent on G (s + 1) b,etween the pair 
of equations (D4). Alternatively the derivatives may be 
eliminated to give the difference equation 
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G(s + 1, tI) - [(s + t)e + 1]G(s, e) + seG(s - 1, e) == o. 

In the present work the function G appears as a gene­
rating function with the argument e == B(1 + z)j(1 - z). 
The expansion of G in power of z is required to deter­
mine matrix elements. The series (D2) for G exhibit 
this function in terms of powers of 1 + z and 1 - z. It 
has singularities at z == ± 1. 

If G (s, z) is expanded in a power series in z, 

G(s,z) =.6 ANzN, 

the behavior of the coeffiCients AN for large values of N 
will be related to the behavior of G near z == ± 1. The 
singularity at z == 1 is a branch point where (1 - z)eG 
vani~hes for a finite value of e. The singularity at z = 
- 1 IS much more complicated since (1 + z leG is in­
finite for all values of e. This Singularity comes from 
the essential singularity in the exponential function in 
the integrand. It makes minor contributions to the 
asymptotic behavior of AN' but it is difficult to treat 
because it is necessary to treat all the powers of (1 + z) 
simultaneously rather than term by term. 

The function (1 - z )sG (s, z) is easy to expand in powers 
of z. Direct differentiation of the integral defining G 
gives the result 

(1 - z)sG(s, z) =.6 [(- 1)Nr(N - s)zN/r(- s)Nl] 

x j e-X2 (1 + Bx2)s-N(Bx2 - 1)Ndx. 

In order to obtain the expansion of G(s, z), the factor 
(1 - z)s must be brought to the right-hand side of the 
equation and expanded. This is done differently for 
positive and negative values of s. If s > 0, the expansion 
of (1 - z )-s is given by 

The expansion of G becomes: 

G(s,z) =:.6 [r(N + s)/r(s)Nl]zN 

x jF(-s,-N,-N-s +1, 

x (1 - Bx2)/(1 + Bx2)) 

x e-X2 (1 + Bx2)sdx, 

where F is the Gauss hypergeometric series. For large 
values of N the hypergeometric function F becomes 
[1 + (BX2 - 1)/(Bx2 + 1)]S so that G is approximately 
given by: 

G(s, z) ==.6 [r(N + s)/r(s)N! ]ZN J e-X2 (2Bx 2)sdx 

== (2B)sr(s + t).6 [r(N + s)/r(s)N!]zN. 

The final simplification is to use Stirling's formula to 
approximate the factorials. The result for G is 

G(s,z) == [r(s + t)/r(s)] (2B)s .6 NS-lzN. 

For s < - t the following approach shows that for large 
values of N the coefficient A% of z N in the power series 
expansion of G (s, z) is bounded by a constant independent 
of N. In order to show this, G is written as 

G(S,Z)==B-1/2.6 (zN/2NN!) 
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x J dy(l +y2)S(1-z)e-y2/B[H.~(yB-l/2) 

- 2NHJ-l (yB-l/2)]. 

The inequality HJ.x) < kex2/2N!()2N/2 can be used to 
bound the coefficients Ah by 

Ah ~ B-l/22k2 J dy(l + y2)s 

which is finite N-independent constant for s < - i. 
*This work is supported in part by the United States Atomic Energy 
Commission. 
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We start with a modern version of Einstein's definition of a gravitational field. Tensors of curvature type and 
the curvature product of symmetric tensors are defined. The interaction tensor is defined as the curvature 
product of the fundamental tensor and the energy-momentum tensor. The tensor W obtained by coupling the 
Riemann tensor and the interaction tensor is used to obtain a characterization of gravitational fields. The 
linear transformation of the space of second-order differential forms, induced by W, is used to give a new 
definition of a gravitationa( field. The field equations are expressed in terms of the gravitational sectional 
curvature function f Thorpe's theorem characterizing Einstein spaces is obtained as a corollary. New 
formulations of the field equations are used to solve the problem of classification of gravitational fields. The 
mathematical foundations of the theory of classification are examined and a geometric interpretation of 
classification is obtained by using the critical point theory on a suitable manifold. 

1. INTRODUCTION 

In recent years, global analysis and the theory of mani­
folds have become increasingly important tools for in­
vestigations into the mathematical theory of relativity. 
It is interesting to note that work in this direction had 
already been done by Elie Cartan many years ago'! 
Some of these techniques were also used by H. Weyl 
and are found, for example, in his classic "Raum, Zeit, 
Materie." However, it was not until Ehresmann2 for­
mulated the concept of connection in a general setting 
that theory of manifolds got its momentum. 

In the theory of gravitation and relativity, attention has 
been concentrated on the analysis of Einstein's field 
equations and their solutions-both exact and approximate 
-and on the possible alternatives to, and generalizations 
of, the theory. That the theory of manifolds is suitable 
for diverse applications has been shown by the well­
known work of Lichnerowicz, Choquet- Bruhat, and more 
recently by Ehlers.3 

The setting of manifold theory is used here to obtain a 
characterization of gravitational fields. This result is 
stated as Theorem 1, and its proof is the main objective 
of this paper, as it enables us to give alternative for­
multations of Einsteins' field equations. 

2. DEFINITION OF GRAVITATIONAL FIELD 

By a differential four-dimensional manifold M of class 
Cr, we mean a Hausdorff, connected, locally Euclidean 
topological space with a fixed four-dimensional Cr atlas, 
r need not be infinite, but in what follows we assume it 
to be large enough to ensure smoothness of the opera­
tions involved. We denote by L(M) the bundle of linear 
frames on M. By the pseudo-Riemannian structure 
r on M corresponding to the symmetric fundamental 
dnsor g, we shall understand the unique torsion-free 
Levi-Civita connection rg on L(M) such that g is paral­
lel with respect to rg • We will say that a tensor is of 
type (r, s) if it is contravariant of degree r and covariant 
of degree s. We use the same letter g for the funda­
mental tensor of type (0,2) or its dual of type (2,0) and 
a Similar usage is followed for other tensors. 

Definition 1 is essentially Einstein's definition of gra­
vitational fields. It is stated here in a form acceptable 
to present day mathematics. 

Definition 1: Let T be a symmetric tensor of type 
(2,0) on M. We define the gravitational field F, with 
source (energy-momentum tensor) T, as the triple 
(M,g, T), which satisfies the following conditions: 
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F-l: g has signature (-,-,-, +)j 
F-2: T is divergence-freej 
F-3: g satisfies Einstein's field equations with source T. 

Using a local coordinate chart and the induced basis of 
the tensor algebra of M, we can write conditions F - 2 
and F-3 in the familial; form 

(1) 

and 

Rij - ~Rgij = - Tij, (2) 

where Vi is the covariant derivative with respect to the 
vector a/ax i , and the units are chosen so that the co­
efficient of T ij in (2) is - 1. 

Condition (1) shows that an arbitrary tensor cannot act 
as a source of the gravitational field. In view of the 
Bianchi identities, Condition (1) acts as a conSistency 
condition for (2). 

We say that M is the carrier of the field F or that the 
space M admits the gravitational field F. In what follows 
we assume M to be a pseudo-Riemannian manifold with 
fundamental tensor g satisfying F-1. 

3. TENSORS OF CURVATURE TYPE 

We now introduce tensors of curvature type. They are 
defined so as to have the algebraic properties of the 
Riemann-Christoffel curvature tensor and playa vital 
role in the analysis of gravitational fields. 

Definition 2: Let S be a tensor of type (4,0) on M. 
We can regard 5 as a quadrilinear mapping (pointwise) 
so that for each x EM, S x can be identified as the map 

Sx: T!(M) x T!(M) x T!(M) x T!(M) --'> R, 

where R is the real field and T!(M) is the space of 
first order differential forms at x EM. It is dual to 
the tangent space T x (M) at x EM. We say that 5 is of 
curvature type if Sx satisfies the following conditions 
for each x EM: 

C-l: Sx(e1, e2 , e3 , e4 ) = - Sx(e 2 , e l , e3 , e4 )j 

C-2: Sx(e1, e 2 ,e 3 , e4 ) = - Sx(e l , e 2 , e4, e3 )j 

C - 3: S x (e 1, e 2, e 3 , e 4) + S x (e l, e 3, e 4, e 2) 

+ Sx(e1,e 4 ,e 2 ,e3 ) = OJ 

where e i E T:(M) for i = 1,2,3,4. 
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From the definition, it follows that S also satisfies the 
following condition, 

C-4: S)e 1,e2,e3,e4) == S ... (e 3,e4,e 1,e2). 

Example 1: The Riemann-Christoffel tensor is of 
curvature type. In fact, the definition given above is mo­
deled after this example. 

Example 2: The tensor G defined by 

where g is the fundamental tensor of M, is of curvature 
type. 

A useful characterization of tensors of curvature type 
is given by the following lemma. 

Lemma 1: Let 5 be a tensor of curvature type. Then 
5 ... induces a linear transformation of A;(M) for each 
x EM, where A;(M) is the space of differential forms 
of degree two at x and conversely the induced tranforma­
tion determines S ... completely. 

Proof: Let (el,e 2,e3,e4 ) be a basis ofT!(M). Then 
an induced basis of A;(M) is given by the elements b i , 

i == 1,2, ... ,6 as follows: 

We now introduce a pseudo-inner product G ... on A;(M) 
defined by 

G ... (e i II ei,e k II e l ) 

== g ... (e i , ek)g ... (ei, e l ) - g ... (e j , ek)g ... (e l , e i ) (3) 

If the basis (e 1, e2, e3, e4 ) is g orthonormal, then the 
basis (b1,b2,b3,b4,b5,b6) is G-orthonormal. The Sig­
nature of G is (+, +, +, -, -, -). Henceforth, we will 
work with this G-orthonormal basis of A;(M). 

To define the linear transformation S ... , it is enough to 
give its action on the basis elements. We define 
5 ... (e i 1\ ei) to be the element whose G product with 
ek 1\ e I is 5 i ik I; i.e., 

It is easy to verify that this defines a linear transfor­
mation of A;(M). The formula (4) also shows that the 
transformation gives all the components of 5. 

(4) 

To obtain the matrix of 5 ... relative to the basis (b 1, b 2 , 

b 3 , b 4 , b 5 , b6 ), we introduce the quantities s aB, O!, J3 == 
1,2, ..• ,6, obtained by replacing pairs of suffixes of S 
by Single suffixes, by the correspondence 23<--» 1, 
31..-> 2,12«--<> 3,14<-.'> 4,24.,....;, 5,34<-.'> 6. For example, 

S11 =52323 and S56 == 52434 • 

Using the quantities S",8, the matrix of S can be written 
as 
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Sl1 S12 s13 -s14 _ s15 - s16 

S21 s22 S23 _S24 - S25 - s26 

S31 S32 s33 - S34 - s35 - s36 

s41 s42 s43 - s44 - s45 -s46 

s51 s52 s53 - s54 - s55 - s56 

S61 s62 s63 _ s64 _ S65 - S66 

We now introduce the concept of curvature product of 
two symmetric tensors of type (2,0). 

(5) 

Definition 3: Let g and T be two symmetric tensors 
of type (2,0) on M. The curvature product of g and T 
denoted by g Xc T is a tensor of type (4,0) defined by 
(all tensors acting pOintwise): 

g Xc T(Xl,X2,Xa,X4) 

= Mg(Xl,X3)'T(X2,X4) + g(X2,X4)'T(X1,X3) 

- g(Xl,X4)'T(X2, X3) - g(P,X3)'T(X1,X4)], (6) 

where Xi E T!(M), the dual of the tangent space at 
x EM, for i = 1, 2, 3, 4. The following properties of the 
curvature product follow immediately from the defini­
tion. 

P-l: g Xc T == T Xcg. 

P-2: g Xc T is a tensor of curvature type. 

P-3: g Xc g = G, where G is the tensor defined in 
example 2. 

Remark: When g is the fundamental tensor of M and 
T is the energy-momentum tensor, we call g Xc T the 
interaction tensor between the field and the source. It 
plays an essential role in the characterization of the 
gravitational fields given here. 

Definition 4: A complex structure on a real vector 
space V is a linear transformation J of V such that 
J2 = - I, where I is the identity transformation of V. 

Lemma 2: The Hodge star operator Jon A;(M) 
defines a complex structure on A;(M). 

For a definition and description of the properties of the 
Hodge star operator and proof of Lemma 2, see, e.g., 
Thrope. 4 The set of complex transformations of A;(M) 
can be regarded as a subset of the set of real transfor­
mations of A;(M). We now state without proof, the 
following Lemma. For details see Ref. 5. 

Lemma 3: The following are equivalent: 

(1) e is a complex transformation of A;(M); 

(2) e commutes with J; 

(3) The matrix of e is of the form 

where A, B are real 3 x 3 matrices. 

4. A CHARACTERIZATION OF GRAVITATIONAL 
FIELDS 

Weare now in a pOSition to state the main result as the 
following: 
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Theorem 1: Let M be a pseudo-Riemannian mani­
fold with fundamental tensor g of signature (-,-,-, +). 
Let T by a symmetric, divergence-free tensor of type 
(2,0) whose trace is eq~al to the scalar curvature. Let 
R be the Riemann-Christoffel curvature tensor of type 
(4,0). Define W by the equation 

(7) 

Then (M,g, T) is a gravitational field if and only if W, 
regarded as a linear transformation of A~(M), commutes 
with the Hodge star operator J. 

Proof: Since Rand g Xc T are of curvature type, 
clearly W is also of curvature type, and therefore, by 
Lemma 1 induces a linear transformation of A~(M). 
The matrix of W is obtained by using the construction 
and notation of Lemma 1. 

Now, using Lemma 3, we see that W commutes with J 
if an only if the following conditions are satisfied: 

(

Wll WI2 W13) (W44 w45 W46) 

w 2I w 22 w23 = - ,w54 w55 w 56 

w 3I w 32 w33 w64 w65 w 66 

(8) 

and 

(

W14 wI5 W16) (W4I W42 W43) 

w 24 W25 W26 = w5I W52 w53 • 

w34 W35 w36 w6I W62 w 63 

(9) 

We now introduce a symmetric tensor of type (2,0) and 
a scalar and use them to express Conditions (8) and (9) 
in a simpler form. They are defined by using local co,­
ordinates as follows: 

Wij = glkWlijk, 

W =gijWij • 

(10) 

(11) 

We now assert that Conditions (8) and (9) are equivalent 
to the following condition: 

(12) 

Proof of the assertion: It is enough to prove the re­
sult in a suitable coordinate chart. We use the chart 
such thatg = diagonal (-1,-1,-1, +1). The compo­
nents Wij and Ware then given in terms of waf, by the 
following: 

Wll = - W 22 - W 33 + w 44, 
WI2 = w2I + w45, 

WI3 = W3I + w46, 

WI4 = w35 - w26, 

W22 = - w11 _ w33 + w55, 

W23 = W 32 + w56, 

W24 = - w34 + w16, 

W33 = - W II - W22 + w 66 , 

W34 = W 24 _ W15, 

W44 = - w44 - w55 - w 66 , 

where Wij = Wji and 
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W = 2[w ll + W 22 + w 33 - w 44 - w 55 - W 66 J. (13k) 

Using formula (13) it is easy to verify that Conditions 
(8) and (9) imply Condition (12). Conversely, if Condi­
tion (12) is given, then from (13d), (13g), and (13i), 
we get Condition (9). 

Equation (13a), (13e), (13h), and (13j) lead to 

w ll - w 22 - w 33 = - w 44 + w 55 + w 66 , 

- w ll + w 22 - w 33 = w 44 - w 55 + w 66 , 

- w ll - w 22 + W 33 = w 44 + W 55 - w 66 , 

w II + w 22 + w33 = _ w 44 -W 55 _ w 66 • 

These imply 

W II =-W44 , w 22 =-w55 , w 33 =_w66 • 

These results and Eqs. (13b), (13c), and (13f) lead to 
Condition (8). This proves the assertion. 

By using (7), (10), (11), Condition (12) can be written as 

Rij + Tij + ~Tgij = ~(R + 3T)gij, i.e., 

Rij - ~Rgij = - Tij + ~Tgij. 

We can rewrite (14) as 

Rij - iRgij = - Tij + ~(T _R)gij. 

Thus Eqs. (14) and (15) are equivalent to 

Condition M: WJ = JW. 

Now the condition that the trace of the source tensor 
equals the scalar curvature can be written as 

T -R = O. 

(14) 

(15) 

(16) 

Thus under the conditions of the theorem, Condition M is 
equivalent to the Einstein field equations (2). 

We observe that if Condition (16) is dropped from the 
statement of the theorem and Eq. (15) is satisfied, then 
the Bianchi identities and the fact that the source tensor 
is divergence-free, imply 

T - R = const. 

Thus Condition (16) fixes the arbitrary constant that 
occurs in Eq. (16'). This completes the proof of the 
theorem. 

(16') 

5. A NEW DEFINITION OF GRAVITATIONAL FIELD 

Theorem 1, proved in the preceding section enables us 
to give a new definition of a gravitational field. The 
most striking feature of the new definition is that it 
makes use of a linear transformation of the space of 
second-order differential forms on the carrier mani­
fold. The field equations appear as a commutation con­
dition. The linearity introduced here is not merely a 
formal result. The new definition leads directly to the 
study of an important feature of gravitational fields, 
namely their classification. This problem is treated in 
detail in Sees 7,8, and 9. We now state the new defini­
tion of a gravitational field. 
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Definition 6: A gravitational field F is a triple 
(M,g, T) satisfying the following conditions: 

GF-l: M is a pseudo-Riemannian manifold with 
fundamental tensor g of signature (-, -, -, +) and 
the Levi-Civita connection rg • 

GF-2: T is a symmetric, divergence-free tensor 
of type (2,0) on M. 

GF-3: W commutes with J; i.e., 

[W,J] = 0, (17) 

where W = R + g Xc T and J is the Hodge star operator. 

The last condition may be stated alternatively as 

GF-3': W induces a complex linear transformation 
of A~(M), regarded as a complex vector space by 
using the complex structure defined by J, for each 
XE M. 

We observe that the new definition leads to Einstein's 
field equations with the cosmological constant A. This 
follows by writing the constant in (16') as - 4A and re­
arranging Eq. (15) in the form 

Rij - ~Rgij + Agij = - Tij. 

Equation (18) is the Einstein field equation with the 
cosmological constant A. 

(18) 

To obtain the field equation without the cosmological 
constant, we need only modify Condition GF-2, by re­
quiring that the trace of the source tensor T be equal to 
the scalar curvature. This requirement which is a con­
sequence of Einstein's field equation (2) is necessary 
here since it does not follow from Eq. (17). 

We conclude this section by giving yet another condition 
equivalent to GF-3 and GF-3'. We define the submani­
folds D + and D _ of A ~ (M) as follows: 

D_ is defined similarly. We define the real-valued func­
tion f on D + U D _ by 

fW = a(~)G(W~, ~), (19) 

where a(~) = + 1 (if ~ ED) or - 1 (if ~ E D J and W = 
R+gXcT. 

The real valued function f* on D + U D _ is defined by 

f*W =f(J~), 

where J is the Hodge star operator on A~(M). This 
definition makes sense in view of the fact that 

(20) 

(21) 

We now assert that Condition GF-3 (or GF-3') is equiva­
lent to the following condition: 

GF-3":f=f*· \22) 

Proof of the assertion: Using Eqs. (19) and (20), we 
can write Eq. (22) as 

a(~)G(W~,~) = a(JOG(WJ~, JO. (23) 
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We note that J has the following properties: 

aW = - a(J~) 

and 

Therefore, Eq. (23) is equivalent to 

(24) 

It is easy to see that (24) and the fact that JWJ and 
- Ware both of curvature type, leads to their equality 
following a standard argument, see, for example, 
Kobyashi and Nomizu, Chap. V. 6 

The condition JWJ = - W, is equivalent to 

J2WJ=-JW 

or 

WJ = JW, using J2 = - I. 

The function f introduced here seems to have deep 
singificance so far as the gravitational fields are con­
cerned. The last condition tells us that by studying f, 
we can determine whether the manifold M is a carrier 
of a gravitational field; if it is a carrier of a gravita­
tional field, then f also tells us what type of field it 
carries. 

6. EINSTEIN SPACES 

Starting from Einstein's field equations and setting T 
(the energy-momentum tensor) equal to zero, we are 
led to the so-called vacuum field equation 

Rij = 0. (25) 

The spaces satisfying Eq. (25) belong to a class of spaces 
called Einstein spaces. A pseudo-Riemannian manifold 
M is called an Einstein space if its Ricci tensor and the 
scalar curvature satisfy 

(26) 

The scalar curvature R is then necessarily a constant. 

Arbitrary Einstein spaces do not occur in the usual 
discussion of Einstein's field equations. However, an 
examination of the proof of Theorem 1 shows that the 
methods used there lead directly to the study of ar­
bitrary Einstein spaces. In fact, putting the source ten­
sor T equal to zero in Eq. (12) or Eq. (14), we obtain 
Eq. (26). But Condition GF-3 is equivalent to Eq. (12)j 
therefore, writing T equal to zero in this condition we 
obtain the following characterization of Einstein spaces: 

M is an Einstein space if and only if [R, J] = 0, where 
R is the Riemann-Christoffel curvature tensor. 

Treating Conditions GF-3' and GF-3" Similarly, we ob­
tain other characterizations of Einstein spaces. We 
collect these results together to obtain the following 
theorem due to Thorpe.4 

Theorem 2: The following conditions are equivalent: 

(1) M is an Einstein space; 
(2) the Riemann-Christoffel tensor R satisfies [R, J] 

= OJ 
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(3) The Riemann-Christoffel tensor R induces a com­
plex linear transformation of A; (M)-regarded as 
a complex vector space by using the complex struc­
ture defined by Jj 

(4) the functions f and f* defined by Eqs. (19) and (20), 
respectively, with W replaced by R, satisfy f = f*. 

7. THE PROBLEM OF CLASSIFICATION 

The theory of classification of gravitational fields is 
easily the most significant development in the theory of 
gravitation in recent years. Foundations of the theory 
of classification of gravitational fields were laid down 
by Petrov more than twenty years ago and his excellent 
account of the theory is now available in English.7 The 
literature on the theory of classification is quite exten­
sive and the problem of classification has been studied 
from different viewpoints by Debever,8 Penrose, 9 

Synge,10 and others. The importance of the theory of 
classification for gravitational radiation was first dis­
cussed by Pirani 11 and has since been investigated by 
several people (see, e.g., Pirani's article in Ref. 12 and 
Sachs 13 ). 

We use the new formulation of the field equations of 
gravitation to study the problem of classification of 
gravitational fields. 

8. ALGEBRAIC THEORY OF CLASSIFICATION 

The problem of classification was initially discussed 
for Einstein spaces and in particular for the case of 
vacuum fields by Petrov. 7 He used the algebraic pro­
perties of the Riemann-Christoffel curvature tensor 
and introduced the notion of replacing pairs of suffixes 
by single suffixes with a different range. This formal 
procedure led him to introduce a 6-dimensional space 
in which the Riemann-Christoffel curvature tensor 
is mapped as a symmetric tensor of order two. The 
classification then proceeds by obtaining distinct canon­
ical reductions of the 6 x 6 symmetric matrix of the 
components of this symmetric tensor. In the case of 
general gravitational fields, the source tensor (energy­
momentum tensor) must be taken into account in carry­
ing out the classification. This is done by replacing the 
Riemann-Christoffel curvature tensor by another ten­
sor constructed by using the source tensor in addition 
to the Riemann-Christoffel curvature tensor. For 
example, the tensor W defined by Eq. (7) is such a tensor. 
The Weyl tensor is another example, differing from the 
tensor W by a multiple of g Xc g, when the field equations 
are satisfied. For the purpose of classification it is 
immaterial whether we use the tensor W or the Weyl 
tensor. 

Our new formulations of the field equations of gravita­
tion make use of the linear transformation of A;(M) 
induced by W. We, therefore, use this result as the basis 
for the classification of gravitational fields. In the stan­
dard discussion of classification, use is made of the 
quadratic form Q which is related to the linear trans­
formation W by 

(27) 

where W stands for either the Weyl tensor or the tensor 
defined by Eq. (7). We observe that the matrix of W with 
respect to the basis b i of A~ (M) is not symmetric when 
(M,g, T) is a gravitational field, but that the matrix of 
Q is symmetric in this case. 
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Now let (M,g, T) be a gravitational field. Then Condi­
tions GF-3 and GF-3' are satisfied. Condition GF-3 
allows us to write the matrix of W with respect to the 
basis bi of A;(M) in the form 

(28) 

where A, B are real 3 x 3 matrices (see Lemma 3). 

Then it is easy to verify that there exists a basis of the 
complex vector space A~ (M), such that the matrix K 
of the complex linear transformation of A~(M) induced 
by W is given by 

K =A + iB. 

If x is the eigenvalue of K corresponding to an eigen­
vector v, then 

Kv = xv. 

(29) 

(30) 

The characteristic equation for the determination of the 
complex eigenvalues x of K is given by 

det(K - xI) = 0, (31) 

where I is the unit 3 x 3 matrix. Equation (31) is a 
cubic equation and we denote its roots by Xl' x2 , and x3 • 

The classification is now carried out according to the 
Penrose diagram. (See for example, Marathe. 14) 

9. GEOMETRIC THEORY OF CLASSIFICATION 

The field equations of gravitation are formulated in 
Condition GF-3" of Sec. 5 by using the function f defined 
on D + U D _ by Eq. (19). In this section we show that the 
general problem of classification can be solved by 
studying the critical points of this function f. 
We recall that using the complex structure defined by 
J, A; (M) can be made into a complex, three-dimensional 
vector space, with multiplication by complex numbers 
defined by 

(a + ib)v = av + bJv, v E A;(M), a, b real numbers. 
(32) 

If (M,g, T) is a gravitational field, then condition GF-3" 
of Sec. 5 is satisfied. Using Eq. (32) we have, therefore, 
the following result: 

v is a eigenvector of the complex transformation in­
duced by W with eigenvalue a + ib if and only if v satis­
fies the equation 

Wv = av + bJv, (33) 

where W is regarded as a real transformation of the real 
vector space A~(M). 

The relation between the critical points of the function 
f and the eigenvectors of the transformation W is given 
by the following theorem. Its proof is similar to a 
lemma due to Thorpe4 and is, therefore, omitted. 

Theorem 3: Let (M,g, T) be a gravitational field. 
Then the following conditions are equivalent: 

C-l: v is a critical point of the function!; 

C-2: Jv is a critical point of the function!j 
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C-3: v is an eigenvector of the complex transforma­
tion W; i.e., 

Wv = xv, 

where x is the eigenvalue corresponding to the 
eigenvector v. 

Theorem 3 establishes the correspondence between 
nonnull eigenvectors of Wand the critical pOints of the 
function j, since any nonnull eigenvector of W can be 
suitably normalized to give an eigenvector of W belong­
ing to D + U D_. 

The Petrov class of the gravitational field (M,g, T) is 
determined by the number of critical pOints of the func­
tion j. The relation of the Petrov classes to the various 
types of the Penrose diagram and to the number of crit­
ical points of the function j is given below. Critical 
points are counted by equivalence classes in D + (either 
v or Jv is in D), where v is equivalent to w if v and w 
determine the same 2-plane. 

Petrov class one corresponds to type I on the Penrose 
diagram, and the gravitational field (M,g, T) belongs to 
this class if the number of critical pOints of the function 
j is three. Petrov class two corresponds to the types II 
and D on the Penrose diagram and the gravitational field 
(M,g, T) belongs to this class if the functionjhas only 
one critical point. Petrov class three corresponds to 
the types III, Nand 0 on the Penrose diagram and the 
gravitational field belongs to this class if the function j 
has infinitely many critical points (type 0) or if it has 
no critical points, or in the terminology of Morse and 
Cairns15 if the function j has only ordinary pOints 
(types III and N). 

10. CONCLUSION 

The modern version of Einstein's definition of a gravi­
tational field has been used here. Tensors of curvature 
type and the curvature product of symmetric tensors 
have been defined. The interaction tensor was defined 
as the curvature product of the fundamental tensor and 
the energy-momentum tensor. W, the tensor obtained 
by coupling the Riemann and interaction tensors, was used 
to obtain a characterization of gravitational fields. The 
linear transformation of the space of second order dif­
ferential forms, induced by W, was used to give a new 
definition of a gravitational field. Thorpe's theorem 
characterizing Einstein spaces was then obtained as a 
corollary. 

We have examined the mathematical foundations of the 
theory of classification of gravitational fields. The 
real six-dimensional space used by Petrov 7 has been 
shown to arise naturally as the space of second-order 
differential forms at each point of the manifold M acting 
as the carrier manifold of the gravitational field (M, g, 
T). A geometrical interpretation of classification is 
obtained by applying critical point theory to a function 
f defined on a suitable manifold. 

We remark that the function j may be regarded as de­
fined over the Grassmann manifold of nondegenerate 
tangent two planes. It reduces to the sectional curvature 
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function in the case when the source tensor is zero. We, 
therefore, call j the gravitational sectional curvature 
function. It seems to have deep significance so far as 
gravitational fields are concenred. The gravitational 
sectional curvature function j gives all the information 
regarding the gravitational field to which it corresponds. 
In terms of j, the field equations can be written as 
j = jJ, and the Petrov class of the field is determined 
by the number of critical pOints of j. 

Conditions GF-3, GF-3', and GF-3" are seen to be fun­
damental for the study of classification. These condi­
tions remain equivalent if certain conditions of Theorem 
1 are relaxed, but they are then not equivalent to 
Einstein's field equations. It has been found that the 
study of these conditions leads to generalized field 
equations of gravitation. These results are reported in 
another paper. 
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Definitions of different types of measure theoretic convergence for observables and operators are given. In 
particular we define convergence in measure, almost everywhere, everywhere, almost uniformly, and 
uniformly. These types of convergence are compared and characterized. Furthermore, our theory is compared 
to that of Segal-Stines pring. Convergence theorems such as a bounded convergence theorem, Fatou's lemma, 
and a special case of Egoroffs theorem are proved. We show that the general Egoroffs theorem does not 
hold. 

1. INTRODUCTION 

In Ref. 1 Varadarajan has pointed out that Mackey's for­
mulation of quantum mechanics 2 gives a direct genera­
lization of the probability theory of Kolmogorov. In this 
generalized theory the a algebra of subsets of a set, 
basic to the Kolmogorov formulation of probability 
theory, is replaced by a less richly endowed algebraic 
structure called a logic. The random variables or ob­
servables on the logic structure are the a homomor­
phisms from the Borel subsets of the real line into the 
logic. 

In addition to the probabilistic aspects of this theory, 
logics also give an abstract generalization of Hilbert 
space theory. Among the most distinguished examples of 
logics are those consisting of all the closed subspaces of 
a Hilbert space. For this case the observables on the 
logic correspond to the self-adjoint operators on the 
Hilbert space. 

A considerable amount of work has been done toward the 
development of the probabilistic aspects of this thory.3-8 
In Refs. 5 and 9 Segal and Stinespring have developed a 
theory of measure theoretic convergences of operators 
on a Hilbert space. However, in their work the "mea­
sures" used differ radically from those of the Mackey 
formulation. Since measure theoretic convergences of 
random variables playa Significant role in the conven­
tional probability theory, an extension of these concepts 
to the generalized theory is quite desirable. In addition 
to being of interest in a purely mathematical sense, 
measure theoretic convergences of observables could 
serve as a useful tool in quantum mechanics. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

In this paper L will denote a sum logic. That is, L is a 
quite full orthocomplemented a lattice in which every 
pair of bounded observables has a unique sum. We refer 
the reader to Refs. 4 and 10 for these definitions and any 
others that are omitted in the sequel. We denote the set 
of all states on L by M and the set of bounded observ­
abIes on L by X. X is a normed linear space under the 
spectral norm II xii = SUp{IA I : ,\ E a(x)}, x EX. 

Let (n, F, m) be a measure space with m (n) = 1, and let 
f'/I'/2' ••• be F measurable real-valued functions on n. 
Observe that fn ~ fin measure [m] if and only if lim 
m[Un - f)-I([- E, E])] = 1 for every E > 0 as n ~ co. We 
can similarly characterize everywhere and almost every­
where convergence in terms of Un - f)-I. For fn ~ f 
everywhere if and only if for every E > 0, limn~'" inf 
Un - f)-1([ - E, E]) = U~~1 n~~k Un - f)-I([ - E, E]) = n, and 
fn ~ f a.e. [m 1 ifand only if m(limn~'" infUn - f)-1 
«(- E, E])] = 1 for every E > O. Now for 11. E F'/n ~ f uni­
formly on 11. if and only if for every E > 0 there exists N 
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such that n ~ N implies that Un - f)-I([ - E, E]) ;;;211.. 
Finally fn -'> f almost uniformly [m] if and only if for 
E > 0 there exists 11. E F such that m(1I.') :s E and fn ~ f 
uniformly on 11.. Since observables correspond to inver­
ses of measurable functions, we are led to the following 
definitions for measure theoretic convergences of obser­
vables. 

In the sequel x, x 1> X 2, ••• will denote elements of X; 
m, m l' m 2, ... elements of M; and a, a l , a 2 , ••• elements 
of L. We define lim sup an = /\O;:~l V~k an and lim inf 
an = V~l /\~=k an' We say that x:n converges to x in 
measure [m] if for every E > 0, limn"'''' m«xn - x) 
[- E, E]) = 1 as n -'> co; xn converges to x almost every­
where [m] (a.e. [m]) if for every E > 0 m(lim inf 
(x n - x)( - E, E]) = 1; x n converges to x everywhere if 
lim inf(x n - x)[ - E, E] = 1 for every E > 0; x n converges 
uniformly on a if for every E > 0 there exists N such 
that n ~ N implies (x n - x)[ - E, E] ~ a; x n converges to 
x uniformly ifxn converges to x uniformly on L;xn con­
verges to x almost uniformly [m ](a.u. [m]) if for every 
E > 0 there exists a E L such that m(a ') :s E and xn con­
verges to x uniformly on a. 

For an observable x E X and 1 :s p < co we let Ix I P de­
note the observable I x I P = h p (x), where h P (A) = I A I P for 
A E R. Then Ixl(E) = x(h·rt(E)) = X({A: IAIEE}),for 
example. For x E X and m EM, we let m x denote the 
measure m x (E) = m(x(E)) for EE B(R). We define 
Ilxll~m) =m(lxI P)llp = [JR IAI Pm x(dA)]lIP for l:sp < co 
and Ilxll~) = inf{r ~ O:mx([-r,r]) = I}. When there is 
no chance for confusion we simple write 11'11 P for 1I·II~m). 
We say that xn converges to x in meanp[m] if Ilxn -xll~m) 
-'> 0 as n -'> co. 

Although we are using the conventional p norm notation, 
m (I x I P) lip is not, in general, a norm. In order to see 
this, let us consider L = P (R 2), the logic of closed sub­
spaces of real Euclidean 2-space. 

Let cp = (1,0) and m(P) = (cp,Pcp) for PE L. Let 

A straightforward computation shows that m ( I A + B I) = 
8/,113 > 2 = m (IA I) + m (I B I). One can easily verify 
that IIA + BII", = 'W + .yTI) > ~ = IIAt, + IIBII",. 

Let xl> x 2 , ••• be mutually comptaible observables. By 
a well-known representation theorem (Ref. 1, Theorem 
3.4), there exists a measurable space (n, F), a a homo­
morphism h of F onto L, and F measurable real-valued 
functions fl>f2' •.• such that Xi (E) = h(fi 1 (E)) for every 
E E B(R). Using this representation theorem one can 
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use standard measure theoretic techniques to prove re­
sults concerning single observables and sequences of 
compatible observables. For example, using this method 
it is straightforward to show that for compatible obser­
vables the convergences we have defined do, in fact, 
generalize those of function theory. 

Theorem 2.1: Let x, Xv X 2, ••• be mutually compat­
ible. Let (n, F) be a measurable space, h a a homomor­
phism of F onto L, and f.f1,h, '" real-valued functions 
such that Xi (E) = h(ji1(E», X(E) = h(j-1(E» for every 
E E B(R). For m EM let m h denote the measure m h (A) = 
m{h(A) on (n, F). Then xn -. x in measure [m], a.e. [m], 
a. u. [m], in meanp [m], respectively, if and only if 
fn -. f in measure [m h]' a.e. [m h]' a.u. [m h]' in mean 
p [m h]' respectively. Also xn -. x everywhere (uniformly) 
if and only if there is a A E F such that h(A') = 0 and 
fn -. f everywhere (uniformly) on A. Finally x n -. X uni­
formly on a E L if and only if there is a A E F such that 
h(A) 2:: a and fn -. f uniformly on A. If h is a a isomor­
phism then x n -. x everywhere (uniformly) if and only if 
fn -. f everywhere (uniformly). 

Although II· II p is not in general a norm, using the above 
representation theorem, the following result is easily 
obtained. 

Lemma 2.1: (i) For l"Sp "S ro and x EX, Ilxll = 
supllxll~m);m EM. (ii) For x EX and m EM, Ilxll oo = 
limllxllp asp -. ro. 

lf 0 < A; < 1 and ~ Ai = 1, the state m = ~ A;m; defined 
by m (a) = ~ A;m; (a) is called a mixture of the mi' A 
state which is not a mixture is pure. We now investigate 
how convergence with respect to m is related to conver­
gence with respect to m; . 

Lemma 2.2: If m = ~ A;m; is a mixture, then 
x n -. X (i) in measure [m], (ii) a.e. [m], (iii) a.u. [m], res­
pectively, if and only if x n -. X (i) in measure [m i], (ii) 
a.e. [m;], (iii) a.u. [m;], respectively, for every i. 

Proof: It is trivial to show that for any of the con­
vergences xn -. x if and only if xn - x -. O. Therefore, 
without loss of generality, let x = O. Observe that for 
aEL 

(1) 

(i) Suppose xn -. 0 in measure [m]. Let E > 0 be given. 
Then lim n_ 00 m (x n [- E, E] ') = lim n_ 00 1 - m (x n [- E, E]) = 
O. Now by (1) for every i 0 "S m i (x n[ - E, E]') "S (I/A i) 

m (x n[ - E, E]') -. 0 as n -. ro. Therefore for every i, 
limm i(X n [- E, E]') = 0 as n -. ro. Hence 

lim 1 -mi(x n[- E, EJ) = lim mi(x [- E, E]') = 0, 
n~OO n-"OO n 

so that xn ~ 0 in measure [m;] for every i. 

Suppose xn -.0 in measure [m;] for every i. Then for 
E > 0, limm; (xn[- E, E]) = 1 as n -. ro. Now for each i 
and eachn, IAimi(x n[- E, E]) I "S A; so that since 
~A; <ro: 

lim ~ Aim;(xn[- E, E]) = ~ Ai lim mi(x n[- E, E]) = 1. 
n~OO i i n---+oO 

Thus for E > 0, lim n_ oo m(x n [- E, EJ) = 1 and hence 
xn -. 0 in measure [m]. 

(ii) Trivially m (a) = 1 if and only if m ;·(a) = 1 for each i. 
(ii) is then immediate. 
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(iii) Suppose Xn ~ 0 a.u. [m]. Let E> 0 be given and fix 
i. Now there exists a E L such that m(a') "S EA; and 
x n -. 0 uniformly on a. Then by (1) m i (a') "S (I/A;) 
m (a') "S E. Therefore, xn -. 0 a.u. [m;]. 

Suppose xn -. 0 a.u. [m;] for every i. Let E> 0 be given. 
Choose K such that ~ K+1 A; "S d2. For i = 1, 2, ... , K 
there exists a; E L such that m; (a';l "S d2KAi and 
xn -. 0 uniformly on a i • Let a = a i V a2 V ••• Va K • 

Then for i = 1,2, . .. ,K, a' = al /\ a2/\ ..• /\ a~"S a'i 
so we have m i (a') "S m; (ai) "S d2KA i • Therefore 
m(a') = ~f Aimi(a') + ~K+1 A;m;(a')"S E. Now for 
a > 0, since x n -. 0 uniformly on ai' there exists N i such 
that n 2:: Ni implies that xn([- a, a]) 2:: a i • Let N = 
max{N l' N 2, ••• , N K}' Then if n 2:: N, for i = 1, 2, ... , 
K,x n ([- a, a]) 2:: a i so that xn([- a, a]) 2:: a1 V a2 V ••• 

V a K = a. Thus m (a') "S E and xn -. 0 uniformly on a. 
Therefore xn -.0 a.u.[m]. 

The following example shows that if m = ~ Aim i is a 
mixture and x n -. x in mean p [m;] for each i, then it 
does not necessarily follow that xn -. x in meanp[m]. 
Let L be the collection of all subsets of the positive in­
tegers with "S as set theoretic inclusion. For i = 1, 2, ... 
and EEL, let 

Then each m i is a state on L. Let m = ~i (1/2 i)m i • 

For n = 1,2, ... define observables xn on L by a(x n ) = 
{0,2n} and xn({2n}) = {n}. Then for each i 

m;(x n) =JAm;(xn(dA» = 0 ·mi(xn({O}) + 2nm i (x n({2 n}» 

= 2n m i ({n}). 

Then as m i ({n}) = 0 if i "" nand mn({n}) = 1, we have 

if n = i 

if n "" i. 

Therefore m i ( I Xli) = m i (x n) -. 0 as n -. ro, and hence 
xn -. 0 in mean 1 m;] for each i. Now observe that 
m({n}) = ~;(1/2i)mi({n}) = (1/2 n)m n({n}) = (1/2 n) for 
every n. Then 

m(lxnl) =m(xn) = JAm(xn(dA) = 0 'm(xn({O}» 

+ 2nm{xn({2 n}» = 2n m({n}) = 2n . (1/2 n) = 1. 

Thus x n A 0 in mean l[m]. If we let y n be defined by 
a(y,) = {o, I} and Yn({I}) = {n}, one can verify that 
II y n I "S 1 and y n -. 0 in mean ro[m i] for every i, but 
Yn f." 0 in mean ro[m]. However, for l"Sp < ro and 
m = ~ A; m i any mixture, convergence in meanp [m] of a 
uniformly bounded sequence is equivalent to convergence 
in meanp[m i 1 for every i. In order to prove this we will 
need the following result. 

Lemma 2. 3: Let y E X and let m = ~ Aim i be a 
mixture. Then 

(i) m(y) = ~ Ai m i (y), 

(ii) II y II~) = supll y II~i) 
i 

Proof: (i) The measures m iy are all supported on 
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1= [-II YII, II yll] and my = 6 Ai m iy . Hence J fdm y = 
6 Ai J fdm iy for any continuous f on 1 and, in particular, 
m(y) =6Aimi(y). (ii) {M;my([-M,M]') = o} = 
{M: miy([-M,MJ') = 0 for all i}. 

Lemma 2.4: Let m = 6 Ai m i be a mixture, and let 
x, xl' x 2 , ••• EX. Then 

(i) For 1 :5 P :5 C(), if x n ~ x in mean p [m ], then x n ~ x 
in meanp[m i ] for every i. 

(ii) If there exists K < C() such that Ilxnll :5 K for every n, 
then for 1 :5p < C(),x n ~ x in meanp[m] if xn ~ x in mean 
p [m i] for every i. 

Proof: Without loss of generality, let x = O. 

(i) First let l:5p < c(). By (i) of Lemma 2.3, m(lxnIP) 
=6Aimi(lxnIP). Then 

o :5 m i (I x niP) :5 (I/A i) ~ A j m j (I x n I P)O 
J 

= (1/i\;lm(lxnIP) ~ 0 

as n ~ c(). Therefore x n ~ 0 in meanp[m i] for every i. 

By (ii) of Lemma 2. 3, Ilxnll~) = SUPi Ilxnll~ni). Then for 

every i, 0:5 Ilxnll~i) :5 I!x nll~l) ~ 0 as n ~ C(), so that 
x n ~ 0 in mean C()[m i] for every i. 

(ii) By Lemma 2.1, Ilx)l~mi) :5 Ilxnll :5 K so that 
m i ( I x niP) :5 K p. Then for every n and i, I Aim i( I x niP) I 
:5 Ai K p. Therefore since lim m i ( I x niP) = 0 as n ~ C() 

and 6iAiK P< C(), we have limn-+ oo m(lx n I P) = limn-+oo 
6iAimi( Ix" I P) = 6 Ailimn-+oo m i( IX n I P) = O. Thus 
x n ~ 0 in meanp[m]. 

3. CHARACTERIZATIONS OF THE CONVERGENCES 

In function theory measure theoretic convergences can 
be characterized in terms of characteristic functions. 
For example, a sequence {fn} of functions converges to 
a function f in measure [m] if and only if for every 
f > 0 there is a sequence of characteristic functions XEn 

such that limn-+ 00 m (E n) = 1 and Ene Un - f)-l[ - f, f] 
where this last statement is equivalent to the fact that 
the supremum norm of U - f) • XE is less than f for 

n n 

every n. In this section we generalize these results to 
convergences of observables. In the observable theory 
characteristic functions correspond to the so-called 
proposition observables which are defined to be those ob­
servables whose spectra lie in the set {O, I}. In the logic 
of all closed subspaces of a Hilbert space, the proposition 
observables are the orthogonal projections. When our re­
sults are applied to this special case in the next section, 
the measure theoretic convergences of operators are 
seen to be closely related to the theory developed by 
Segal and Stinespring. 

Theorem 3.1: xn ~ x (i) in measure [m], (ii) a.e. 
[m], (iii) everywhere, respectively, if and only if for 
every f > 0 there is a sequence of propositions an such 
that a :5 (x - x)[ - f, f] and (i) limn-+ oo m (an) = 1, (ii) 
a n :5 :In+!> n n= 1,2, ... , and limn'" 00 m(an ) = 1, (iii) 
a n :5 a n+!> n = 1,2, ... , and limm(a n ) = 1 as n ~ C() for 
every m EM, respectively. 

Proof: Without loss of generality we assume x = O. 
(i) For sufficiency we have m(a n ) :5 m(x n [- f, f]). Thus 
limm(x n [- f, fJ) = 1 as n ~ C() and xn ~ x in measure 
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[m]. For necessity let an = xn[- f, fl. Then lim
n 

... oo 
m (an) = 1. (ii) For sufficiency we have m (lim inf 
x n[- f, f]) 2:: m(lim infa n ) = m(v ail = limm(a i ) = 1. 
For necessity, let an = II f=n xi [- f, f]. Then an :5 a n+l> 
a n :5 x n[- f, f] and lim n ... oo m(an) = limn_oo m(lIj';n 
Xi [- f, f]) = 1. (iii) follows from applying (ii) for all 
mEM. 

We write x a for the proposition observable x that satis­
fies x({I}) = a. Recall that x is a proposition observable 
if and only if x 2 = x and m (x a) = m (a). 

Lemma 3. 1: Let y E X and let x a be a proposition 
observable such that x a ~ y. Then II yx a II :5 f if and 
only if a:5 y[- f, fl. 

This is proved by a straightforward application of the 
representation theorem of the previous section. 

Theorem 3.2: (i) xn ~x in measure [m] if and only 
if for every f > 0 there are proposition observables y n 

such that limn ... oo m(Yn) = I'Yn ~ xn -x and 
II (x n - x)ynll :5 f. (ii) If for every f > 0 there are pro­
position observables Y n such that Y n ~ xn - x, 
II(x n -x)ynll :5 f, Y n :5 Yn+l,n = 1,2,'" and m(Yn) ~ 1, 
then xn ~ x a.e. [m]. If xn - x ~ J!k - x, n, k = 1,2, ... , 
then the converse holds. (iii) If for every f > 0 there are 
proposition observables Y n such that Y n ~ xn - x, 
II(x n - x)Ynll :5 f, Yn:5 Yn+l> n = 1,2,'" and m(y n) ~ 1 
for every m EM, then xn ~ x everywhere. If xn - x_ 
x k - x, n, k = 1,2, ... , then the converse holds. 

Proof: This theorem follows from Lemma 3. 1 and 
the proof of Theorem 3.1. 

Theorem 3.3: x n ~ x uniformly if and only if lim 
Ilxn - xii = 0 as n ~ c(). 

Proof: Assume x = O. Let f> O. Then Ilxnll :5 f for 
n 2:: N if and only if a(x n) C [- f, f] which holds if and 
only if x n [- f, f] = 1 for n 2:: N. 

Theorem 3.4: (i) If for every f > 0 there is a propo­
sition observable Y(f) such that Y ~ xn - x for every n, 
m (I - y) 5 E, and lim n ... oo II (x n - x)yll = 0, then xn -? x 
a.u. [m]. (ii) if xn - x ~ x k - x for all n, k then the con­
verse of (i) holds. 

Proof: (i) follows from Lemma 3. 1. (ii) Let f > 0 be 
given. Then there is an a E L such that m (a') :5 f and 
xn -? 0 uniformly on a (we are assuming, as usual, that 
x = 0). Now for k = 1,2, ... , there is an Nk such that 
n 2:: N k implies x n[ - l/k, l/k] 2:: a. Let b = II k=l II :'N

k 
x n [-I/k,l/k]. 

Now b ? a so m (b') :5 m (a ' ) :5 f. For 0 > 0 choose Z such 
that I/Z :5 0. Then if n 2:: N z' 

x,,[- 0, o]? x n [-I/Z, I/Z] 2::/;'1 x j [-I/Z, l/l] 

? A ,A x j [-I/k,l/k]=b. 
k=l J=Nk 

Therefore m (b ' ) :5 f and x n -? 0 uniformly on b. Further­
more since x n ~ X k for every n, k, b ~ x n (E) for all n 
and E E B(R). If we let Y = x b , then Y ~ xn for all nand 
m(I- Y) = m(b'):5 f. If 0 > 0 there is an N such that 
n 2:: N implies x n [- 0, 0] ? b and by Lemma 3.1 Ilx n YII:5 0 
for n ? N. Hence limllxn YII = 0 as n -? C(). 

In function theory a sequence fn converges in measure 
[m] to a function f if and only if 
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lin - il J d m ~ 0 as n ~ 00. 
1 + I in - il 

We now generalize this result. We denote the nonnega­
tive reals by R + • 

Theorem 3.5: Let g:R+ --') R+ be a strictly mono­
tonic bounded Borel function which is continuous at 0 and 
g(O} == O. For x,Y EX, let p(x, y} == m(g( Ix - y 1)). Then 
xn ~ x in measure [m] if and only if p(xn,y} ~ 0 as 
n ~ 00. 

Proof: Since p(xn, x} == p(xn - x, OJ, without loss of 
generality let x == O. Suppose xn ~ 0 in measure [m]. 
Let f > 0 be given. As g is continuous at 0 with g(O) == 0, 
there exists 1'} > 0 such that I A I ::s 1'} implies that 
g( I A I} ::s £/2. If we let K be a bound for the function g, 
then 

I p(x n' O} I == Jg( I A I} m Xn (dA) == l~ g( IA I} m Xn (dA) 

+ l[ ],g(IAI}m x (dA}::S h + K 'm x ([-1'},1'}],). 
-~, ~ n n 

Now x ~ 0 in measure [m], so that m x ([ - 1'), 1'} n ~ 0 
n n 

as n ~ 00. Therefore, there exists N such that n 2: N 
implies that m x ([ - 1'), 1'}]'} ::s £/2K. Then for n 2: N, 

n 

I p(x n , O} l::s if + K . mx ([-1'},1'}),} ':S f. Hence, 
n 

p(xn , 0) ~ 0 as n ~ 00. 

Suppose now that p(x n' O} ~ 0 as n ~ 00. Let f > 0 be 
given. Then uSing the fact that g is monotone increasing 

p(xn,O} == J g(IAI}m xn (dA) 2: {E,E],g(lAI}m xn (dA) 

::sg(f)mx ([-E,En. 
n 

Since g(O) == 0, E > 0, and g is strictly monotone, 
g(E} > O. Therefore, O::s mx ([- E, fJ'} ::s (1/g(E)] 

n 
p(x n , O} ~ 0 as n ~ 00. Consequently, lim n ... oo 
m(xn([- E, f])) == 1 -limn .... oo mx ([- E, fn == 1 so that 

rt 

X n ~ 0 in measure [m]. 

Corollary 3.1: Let 1 ::s p < 00. Then x n ~ x in 
measure [m] if and only if m(lx - xn I P (I + Ix - xn IP}-l) 
~ 0 as n ~ 00. 

Proof: This result is immediate from Theorem 3.5 
with g(A} = IA I P(1 + IA I P}-l. 

4. CONVERGENCE OF OPERATORS 

Let us now consider the special case in which L is the 
logic P(H} of all closed subspaces of a separable Hilbert 
space H. In this case the bounded observables on L can 
be identified with the bounded self-adjoint operators on 
H. For a self-adjoint operator A on H, we let A('} denote 
its resolution of identity. We notice that the proposition 
observables correspond to orthogonal projections and 
that two bounded self-adjoint operators A and Bare 
compatible if and only if AB == BA. 

Segal and Stinespring5 . 9 have developed a measure and 
integration theory of operators on a Hilbert space. AL­
though this theory is also motivated by certain investi­
gations in quantum mechanics, the "measures" used are 
quite different from the states in the present theory. 
Nevertheless, we shall formally compare the two 
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theories. First, we give the definition of a gage space 
which is basic to the work of Segal and Stinespring. 

Let H be a separable Hilbert space. Let A be a ring of 
operators on H, Le., A is an algebra of bounded every­
where defined linear operators which is closed under ad­
junction, is closed in the weak operator topology, and 
contains the identity I. A gage m is a nonnegative map 
on the projections in A which satisfies the following. 

(i) If {Pn} is a sequence of mutually orthogonal projec­
tions in A, then m (v P n) = 6 m (P n)' 

(ii) If U is a unitary operator in A and P is a projection 
in A, then m(U*PU) == m(P}. 

(iii) If P is a projection in A, then there exist projections 
{Pn} C A such that P == V P n and m (P n) < 00 for every n. 

The system (H, A, m) is called a gage space. If m (1) == 1, 
then (H, A, m) is called a probability gage space. 

We shall only consider the case when (H, A, m) is a pro­
bability gage space. In what follows we think of A as 
being the ring generated by P (H). We emphasize that al­
though gages and states are both "measures" on projec­
tions, they have essential differences. For example, 
gages are subadditive, while states are, in general, not 
subadditive. 

Let A,Av A 2 ,'" be operators on H. The Stinespring 
definition for convergence in measure is that An ~ A 
in measure [m] if for every f > 0 there exist projections 
P n E A such that II (An - A}P nil ::s E and m (Pn) ~ 1. 
Theorem 3.2 gives a similar result for our convergence 
in measure. However in that theorem we require that P n 

commute with An - A. This is because there is no satis­
factory definition for the multiplication of two noncom­
patible observables. However, in the Hilbert space case 
the usual multiplication can be used and we can, therefore, 
remove this restriction. 

Theorem 4. 1: Let m be a state on P (H). Then 
An ~ A in measure [m] if and only if for every E > 0 
there exist projections P n such that II (An - A)P nil ::s E and 
m(Pn ) ~ 1 as n ~ 00. 

Proof: Assume A == O. By Ref. 11 there exists an or­
thonormal set {¢ n} CHand a set {A n} C R with 
O::s An ::s 1, 6 An = 1 such that m(P} = 6 An(¢n,P¢n)' 
By (i) of Lemma 2.1, without loss of generality we can 
take m(P) == (¢,P¢) for some ¢ EH with II¢II :::: 1. The 
necessity is done by Theorem 3. 2. For sufficiency, let 
E > 0 be given. Then by hypothesis there exist projec­
tions P n such that IIAn P n II ::s £/2 and m (P n) ~ 1. Now 

Im(IAni(I+Anl)-l)1 == I(¢, IAnl(/+ 1An/)-I¢) I 

I(¢, IAnl(/+ IA n l)-l[Pn + (/-Pn }]¢) I 

::s I(¢, IAnl(/+IAnl}-lPn¢) + 1(¢,IAnl(/+IAnl}-lP~¢)I. 

Now by Schwarz'S inequality, 

I(¢, IAnl(/+ IAnl}-lPn¢) I ::s II¢II· II(I+ IAnl}-IIAnIPn¢11 

::s 11(/ + IAn 1)-111· IllAn IPn¢11 ::s IllAn IPnl1 . II¢II 

== IIAnP,,11 ::s £/2. 

Again USing Schwarz'S inequality, 
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I<¢, IA n l(1+I A n l)-lP;-¢)I:s 1I¢11·IIIAn i(1+IAn l)-lP;¢1I 

:s IllAn 1(1 + IAn 1)-111 . IIP;¢II :s IIp;¢11 = (P;¢, IP;¢) 1/2 

= (m(P;))1/2. 

Now m(P/i) = 1 -m(Pn) --7 0 as n --7 00. Therefore there 
exists N such that n 2: N implies that (m(P/i »1/2 :s h. 
Then for n 2: N, 

Consequently m(IAn I (I + IAn 1)-1) --7 0 as n --7 ro. Then 
by Corollary 3.1 An -) 0 in measure [m]. 

Lemma 4.1: Let A be a bounded self-adjoint opera­
tor and P a projection on H. (i) If AP = P A, then IIAP II 
:S E implies P :S A([ - E, E]). (ii) If P :S A([ - E, E]) then 
IIAP II :S E. 

The proof of this lemma is the same as the proof of 
Lemma 3.1. The crucial point is that (ii) holds in the 
above lemma even if P does not commute with A. In the 
Segal-Stinespring definition of nearly everywhere con­
vergence, An --7 A n.e. [m], if for every E > 0 there 
exist projections P nEil. such that II (An - A)Pn II :S E, 

P
YI 

:S P n +1 , n = 1,2, ... , andPn converges strongly to the 
identity 1. Also An --7 A a.u. [m] if for any E > 0 there is 
a projection PEA such that m (p.l) < E and lim 
II (An -A)pll = 0 as n --7 00. 

Theorem 4.2: Let m be a state on P (H). (i) If 
An --7 A a.e. [m] then for every E > 0 there are projec­
tions Pn such that II (An - A)Pnll:s E,Pn :S Pn+l' n = 1,2, 
... , and m (P n) --7 1. If we require that P n commute with 
An - A then the converse holds. (ii) If An --7 A every­
where there exist projections Pn such that 
II (An -A)Pnll :S E, P n :SPn+1 , n = 1,2, . .. ,andPn --71 

strongly. If we require that P n commute with An - A 
then the converse holds. (iii) If An --7 A a.u. [m] then for 
any E > 0 there is a projection P such that m (p.l) :S E 

and lim II (An - A)P II = 0 as n --700. 

Proof: (i) This follows from Lemma 4. 1 and Theorem 
3.1. The converse follows from Theorem 3.2 (ii). (ii) 
By Lemma 4.1 and Theorem 3.1 there are projections 
Pn such that II(An -A)Pnll:s E, Pn :sPn+!> n = 1,2, ... , 
and m{Pn ) = 1 for every state m. Let ¢ EH with II¢II = 1 
and let m{P) = (¢,p¢). Then 

as n --7 00. Thus P n ¢ --7 ¢ for every ¢ E H and hence 
Pn --7 1 strongly. The converse follows from Theorem 
3.2 (iii). (iii) This follows from the definition of conver­
gence a.u. [m] and Lemma 4.1. 

We now give an example to show that the converse in 
Theorem 4.2 (i) fails in the noncommutative case. 

LetH=R2, m(P) = (¢,P¢), where ¢ = (1,0). For 
n = 2,3, ... define self-adjoint operators An on H by 
a(An) = {lin, I} and 

1 (n2 n) An({ lin}) = -1 -2 ' 
+ n n I 

An({l}) = 1 (1 -n2n\. 
1 + n 2 - n ) 
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Then 

1 (n+l I-n\ 

An = 1 + n 2 I-n (I/n)+ n2)' 

Let E > 0 be given. Let P = (~ g). Then 

(

n+ 1 ) 
An P = 1 + n

2 0 --7 (0 0) 
I-n 0 0 
-- 0 
1 + n2 

uniformly. Therefore, there exists N such that n 2: N 
implies that IIAnPl1 :S E. For n < N, let Pn = 0 and for 
n 2: N letPn =P. Then IIAnPnl1 :S E, P n :SPn+1 for every 
n, and m (Pn ) --7 1. 

However, we now show that An A 0 a.e. [m]. It is easy to 
verify that An({Iln}) = LH({(l, lin)}), the linear sub­
space spanned by (1, lin). It is then clear that for every 
n, II"//=n Ak[- t, t] = IIk=n Ak({Ilk}) = O. Therefore, 
lim infAn([- t, t]) = 0 so that An A 0 a.e. [m]. 

This example also shows that the converse of Theorem 
4.2 (iii) does not hold. One can give examples which 
show that the converse in Theorem 4. 2 (ii) fails in the 
noncommutative case. 

5. CONVERGENCE THEOREMS 

In this section we investigate how the various types of 
convergence are interrelated and prove a generalized 
bounded convergence theorem and Fatou's lemma. We 
also consider Egoroff's theorem. The following lemma 
is easily proved. 

Lemma 5.1: Uniform convergence implies any of the 
other types of convergence. 

Our next result shows that if L = P (H) with H a finite­
dimensional Hilbert space, then everywhere convergence 
is equivalent to uniform convergence. We enlarge the 
class of logics for which this result holds through the 
following definition. 

A logic L is said to have finite chain condition (f.c.c.) if 
{aJ C L with a1 2: a2 2: ••• implies that there exists N 
such that an = aNfor n 2: N. 

Lemma 5.2: If L has f.c.c., then everywhere conver­
gence implies uniform convergence. 

Proof: Suppose xn --7 0 everywhere. Let E > 0 be 
given, and let an = II k=n x k ([ - E, E]). Then al 2: a2 2: •••• 

Then since L has f.c.c. there exists N such that a~ = a~ 
for n 2: N. Then an = aN for n 2: N so that 1 = lim 
infx n ([ - E, E]) = V::;l an = a N' Hence if n 2: N, then 
12: xn ([- 1', 1']) 2: aN = 1. Thus xn([- E, 1']) = 1 for n 2: N, 
and consequently xn --7 0 uniformly. 

Lemma 5.3: (i) implies (ii), and (ii) implies (iii), 
where 

(i) xn --7 x everywhere; 

(ii) xn --7 x a.e. [m]; 

(iii) xn --7 x in measure [m]. 
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Proof: That (i) implies (ii) is obvious. That (ii) im­
plies (iii) follows from Theorem 3.1. 

In function theory if a sequence converges in measure 
then there exists a subsequence which converges a.e. 
We now show that this does not, in general, hold for ob­
servables. Let H, m, and {An} be as in the example at 
the end of the last section. In the discussion of that 
example, we showed that for E > 0 there exist projections 
P n such that IIAnPnl1 :s E and m(Pn) ~ 1. Then b\ 
Theorem 4.1, An ~ 0 in measure [m]. Let {A nkJ be any 
subsequence. As noted earlier, Ank({l/nk}) = 
LH({ (1, link)})' It is then obvious that for every 1, 
Ak'=zAnk([-t,tD = Ak'=IAnk(i1/nkf) = O. Therefore 

m(lim infA nk ([- t, t]» = 0 
k-co 

so that Ank /t 0 a.e. [m]. 

Lemma 5.4: (i) For 1 :s p :s co, if xn ~ x in mean 
p[m], then xn ~ x in measure [m]. (ii) If xn ~ x in 
measure [m] and there exists K such that Ilxnll :s K for 
every n, then xn ~ x in meanp[m] for l:sp < co. 

Proof: Without loss of generality, let x = O. 

(i) Let 1 :s p < co. Then 

O:sm(lxnIP(I+ Ix n IP)-l=J IAtp m (dA) 
1 + IA I P Xn 

:s J IAIPm x (dA) = (1Ixnllp)P ~ 0 as n ~ co. 
n 

Therefore, m( IXn I P(I + IX n I P)-l) ~ 0 as n ~ co, so that 
by Corollary 3.1 xn ~ 0 in measure [m]. 

For p = co, let E > 0 be given. Then there exists N such 
that n ~ N implies that Ilx n II co = inf{r > 0 : 
m(xn([-r,r]» = 1} < E. But then for n ~ N, 
m(xn([- E, E]» = 1. Hence,xn ~ 0 in measure [m]. 

(ii) Now Ilxn II :s K implies that m x ([ - K, K]') = 0 for 
everyn. Then (1Ixnllp)P = J~ IAlpnmx (dA). For 

n 

IA I P IA I P 
IAI:sK ---:s ---

'l+KP 1+ IAIP 

so that IA I P :s (1 + KP)[ IA I pI(l + IA I P)]. Then using 
Corollary 3.1 we have 

(1Ixnllp)P:s(l+KP)l~ IAIP mx (dA) = (l+KP) 
- 1 + IA I P n 

m(lxnIP(I+ IxnIP)-l) ~ 0 

as n ~ co. Therefore, Ilxnllp ~ 0 as n ~ co, and hence 
xn ~ 0 in meanp[m]. 

Corollary 5.1 (Bounded Convergence Theorem): If 
x n ~ x in measure [m] and there exists K such that 
Ilxnll :s K for every n, then m(xn) ~ m(x) as n ~ co. 

Proof: Takingp = 1 in Lemma 5.4, m (Ix n - x I) ~ 0 
as n ~ co. Then 

=m(!xn-xl)~O 

as n ~ co. Hence m(xn) ~ m(x) as n ~ co. 
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We wish now to prove a Fatou lemma. Toward this end, 
we prove the following sequence of lemmas. 

Lemma 5.5: Let x,y EX with x ~ y. Then for E > 0, 
m«x + y)[- E, En:s m(x[- d2, d2]') + m(y[- d2, d2]'). 

Proof: This is clear once x and yare represented by 
functions. 

Lemma 5.6: (i) Let {x n}, {y n} C X and suppose 
xn ~ 0, y n ~ 0 in measure [m]. Suppose further that 
xn~ Yn for every n. Then xn + Yn ~ 0 in measure [m]. 
(ii) If xn ~ 0 in measure [m], then IX n I ~ 0 in measure 
[m]. 

Proof: (i) is a corollary of Lemma 5. 5 and (ii) is 
trivial. 

Lemma 5.7: Let Xl' X2 EX, and let y = 
t (x 1 + X 2 - I xl - X 2 I ). Then 

(i) y:s Xl and y :s x2; 

(ii) if Xl <-7 x 2 and Xl ~ 0, then IIYI! :s Ilx 2 1!. 

Proof: (i) Observe that for m EM, 

m(lx1 -x2 1) = J Ixlm x -x (dX) ~ !JXmx -x (dA) I 
1 2 1 2 

= !m(x1 -X2 )! ~ m(x 2 ) -m(x 1 )· 

Then - m ( I xl - X 2 I) :s m (x 1) - m (x 2)' Then using the 
linearity of m, 

m(y) = t[m(x1) + m(x 2 ) -m(lx1 -x2 !)]:s t[m(x 1 ) 

+ m(x2 ) + m(x 1 ) -m(x2)] = m(x1). 

Thus m(y) :s m(x1) for every m, so that y :s Xl' Similar­
ly, y :s x 2 • 

(ii) Represent Xl and x 2 by functions f 1'/2 and use the 
fact that f1 ~ 0 implies - I f21 :s min(fv f 2) :s I f 2 1. 
We now prove a Fatou Lemma. In order to get the re­
sult, we shall have to assume that each observable in the 
sequence is compatible with the limit observable. 

Theorem 5.1 (Fatou's Lemma): Let {x n} be a se­
quence of nonnegative observables in X (Le., xn ~ 0 for 
every n), and suppose x EX with x ~xn for every n. If 
xn ~ x in measure [m], then O:s m(x):s lim infm(xn) as 
n ~ co. 

Proof: We first show that m(x) ~ O. Since xn ~ 0 and 
xn ~ x, it is easy to show that x(- co, - E) :s (x - X

n
) 

(- co, - E) for every n and every E > O. Then for 
k = 1,2,'" 

o :s m(x(- <Xl, - 11k» :s m (x - xn)(- <Xl, - 11k) 

:s m«x - x,,)[- 11k, 11k]') ~ 0 

as n ~ <Xl. Hence m(x(- <Xl, - 11k» = 0 for k = 1,2, .... 
Then 

= lim m(x(- <Xl, - 1/ k» = O. 
k=co 

Thus m(x(- <Xl, 0)) = 0 so that m(x) = jCOXmx(dX) ~ O. 
o 
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For n == 1,2,'" let y" == i(xn + x - Ix" -xl). Then by 
Lemma 5.7, II Y"II :s IIxll for every n. Observe that 
Y n -x == H(x" -x) - Ix" -xl]. Now by hypothesis 
xn - x ---) 0 in measure [m]. Then by Lemma 5.6 (ii), 
- IX n -xl ---) 0 in measure [m]. Then since 
xn -x ~ - IX n -xl by Lemma 5.6 (i), (x" -x)­
IX n - x I ~ 0 in measure [m]. Then for E > 0, 

m«Y n - x)([- E, E])) == m([H(xn - x) - Ix" - x I}] 

([- E, E]» == m([(x" -x) - IXn -xl]([- 2E, 2E]» --7 1 

Thus Y" --7 X in measure [m] and II Y"II :s Ilxll for every n. 
Therefore by Corollary 5.l,m(y n) ~ m(x). Now by 
Lemma 5.7, m (y ,,) :s m (x n) for every n. Hence, m (x) == 
lim,,-->oo m(Yn) :s limn-->oo infm(x n)· 

We now prove the converse of Egoroff's Theorem. 

Theorem 5.2: If xn ~ x a.u. [m], then x n --7 X a.e. [m]. 

Proof: Without loss of generality, let x == O. Let 
E > 0 be given. Now for I) > 0, there exists a E L such 
that m (a') :s I) and xn ---) 0 uniformly on a. Then there 
exists N such that n ?: N implies that x,,[- E, E]?: a. 
Therefore for n ?: N, II ';)=" x k ([ - E, E]) ?: a and hence 
m(II';)=n x k([- E, E]»?: m(a) == l-m(a')?: 1- 1). Thus 
for I) > 0, there exists N such that if n ?: N then O:s 1 - m 
(1Ik'=" x k([- E, E]»:S I). Hence, 

m(lim infx,,([- E, E]» == lim m( A Xk([- E, ED) == 1. 
n-+oo k=n 

We next prove a strong form of Egoroff's theorem for 
logics having i.c.c. 

Theorem 5.3: Let L have f.c.c. If x n ---) x a.e. [m], 
then xn ---) x a.u. [m]. In .fact, there exists a E L such that 
m(a') == 0 and x" --7 x umformly on a. 

Proof: Without loss of generality, let x == O. Letp be 
a positive integer. Then II 1:'=1 x k[ - lip, lip] :s II k'=2 
xk[-llp, lip] :s ... so that since L has i.c.c., there 
exists Np such that II I:'=n x k[- lip, lip] == II f=N 

. xk[-llp, lip] for n?: Np• Without loss of generality, take 
N 1 :s N 2 :s ... and let ap = IIf=N xk([-llp, lip]). Then 
m (a p) == m (lim inf x" ([ - lip, l!p]» == 1, and for n ?: Np 

x,,([-llp, lip])?: A x k([- lip, lip]) == ap' (2) 
k=n 

Now for every k and every p, x k[ - lip, lip] ?: 
x k[- lip + 1, lip + 1]. Then as Np+1?: Np' 

Therefore a 1 ? a2 ?: •.. so that there exists K such that 
a p == a K for p ?: K. Let a == aK' Then m(a') == 
1 - m (a K) == O. For I) > 0 choose p such that p ?: K and 
lip :s I). Then using (2) for n ?: Np 

x,,[-I),I)]?: x,,[-llp, lip]?: ap == ak == a. 

Thus m (a') == 0 and xn ~ 0 uniformly on a. 

Corollary 5.4: Let H be a finite-dimensional Hilbert 
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space. If An --7 A a.e. [m] then there exists a projection 
P such that m(P.l) == 0 and lim II (An -A)pll == 0 as 
n ---) ro. 

Corollury 5.5: If H is a finite-dimensional Hilbert 
space and An ---) A a.e. [m], then m (An) ---) m (A). 

We now obtain a characterization for almost uniform 
convergence of operators. This result will be useful in 
the next section where we show Egoroff's theorem need 
not hold. Let H be a separable Hilbert space. For U C H, 
we let V denote the closure of U in H. In what fallows 
when we refer to S as a linear subspace of H we are not 
assuming that S is closed. It is easy to verify that the 
following lemma holds. 

Lemma 5.8: Let {Sp,k: p, k == 1,2,"'} be linear 
subspaces of H. Then nf=1 U~=1 np=n Sp,k is also a 
linear subspace of H. 

Theorem 5.4: Let m(P) == <cp,Pcp) where cp EH with 
II cp /I == 1. Then the following are equivalent: 

(i) An ~ A a.u. [m ]; 

(ii) CPE 0 G 0 (Ap -A) ([-j,j]) . 
k-1 n-1 p-n 

Proof: Without loss of generality, let A == O. Let 
S == n;;l U~=l np=n Ap([-l/k, 11k]). By Lemma 5.8, S is 
a linear subspace of H. 

(i) implies (ii): Let E > 0 be given. Then there exists 
a projectionP such that m(P.l) :s E2 and An ---) 0 uniform­
lyonP. Let 1/1 ==Pcp. Then Ilcp -1/111 2 == IIP.lcpl12 == 
< cp,P.lCP> :s E2 so that II cp -1/111 :s E. Now for every k, 
there exists N k such thatp ?: N k implies that A p 
([ - II k, 1/ k]) ?: P. Letting P also denote the range of P 
then np=N

k 
A p([ -1/ k, 1/ k]) ~ P for every k. Then tri-

vially S d P. Then 1/1 == Pcp E P c:;;: S. Thus for E > 0 
there exists 1/1 E S such that II cp -1/111 :S E. Therefore 
cp E S. 

(ii) implies (i): Let E > 0 be given. Then there exists 
1/1 E S such that 111/1- cpII :s.[E. LetP == LH({1/I}). Then 
P is a one-dimensional linear subspace of H and, hence, 
is closed. Therefore,P is a projection on H. Bya stan­
dard result in Hilbert space theory, 

IIPLcpl1 == Ilcp -pcpII 

== inf{11 cp - ~ II : ~ E p} :S II cp - 1/111 :S ,fE, 

Then m (p.l) == < cp,P.lCP> == IIp.lcpl12 :S E. 

Now 1/1 E S so that for every k, 1/1 E U:;'1 n ,!,=n 
Ap([ - 11k, 11k]). Then, for k == 1,2, .•. there exists N k 
such that 1/1 E n'!'=Nk Ap([-l/k, 11k]). Thus forp?: N k, 

1/1 E Ap(r-l/k, 11k]). But then for p 2:: N k , 
Ap([-17k, 11k]) ~ LH({l/I}) = P. Therefore,A" ---> 0 uni­
formly on P completing the proof. 

Corollary 5.4: Letm(P) =='6A;<Cp p Pcp) where 
{cp i} is an orthonormal set in H and 0 < Ai :S 1 with 
'6 A i == 1. Let 

s== 0 Q B (Ap-A) (l-i,iJ)· 
k-l n-1 p-" L 

Then A" ---) A a.u. [m] if and only if cp i E S for every i. 
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Proof: Let m i (P) = (¢ i,P¢i>' Then by Lemma 2.1, 
An ---7 A a.u. [m] if and only if An ---7 A a.u. [m i] for every 
i. The result is then immediate from Theorem 5.2. 

6. COUNTEREXAMPLE FOR EGOROFF'S THEOREM 

Theorem 5.3 shows that Egoroff's theorem holds on a 
finite-dimensional Hilbert space. We now wish to show 
that this does not hold for infinite-dimensional Hilbert 
spaces, and consequently Egoroff's theorem is not valid 
for observables. 

In preparation for the construction of a counterexample 
to Egoroff's theorem, we conSider now the collection of 
all polynomials on the unit interval [0, 1]. Let C[O, 1] de­
note the continuous functions on [0, 1], and let II be the 
collection of polynomials in C [0, 1]. Let I· I denote the 
supremum norm on C[O, 1 J. 

Lemma 6.1: Let {r k} Z=1 C [0, 1]. Let Z = 
{p E II : p (r k) = 0 for 1 s k s n}, and let Z c denote the 
closure of Z in C[O, 1]. Then 

zc = if E C[O, 1] : !(r k ) = 0 for 1 s k s n}. 

Proof: We show that Z C is a closed ideal in C[O, 1]. 
Clearly Z is a linear subspace of C[O, 1], and hence ZC 
is a closed linear subspace. Let! E Z C and g E C[O, 1] 
with 1/1 = Ig I = 1. Let E > 0 be given. Now II is dense 
in C[O, 1] so that there exists q E II such that 
I g -ql < min{d2, 1}. Then Iql > 1- Igl = o. Now 

/ E Z C so that there exists s E Z such that 1/ - s I 
< d2lql. Letp = sq. Then since s E Z and q E II, 
P E Z. Furthermore 

1/ g - p I = If g - sq I s 1/ g - / q I + 1/ q - sq I 
s 1/1· Ig-ql + Iql· 1/ -sl < (. 

Therefore /g E ZC for every / E ZC and g E C[O, 1] with 
1/ 1= Igl = 1. Then as ZC is a linear space, /g EZc 
for every / E ZC and every g E C[O, 1]. Thus ZC is a 
closed ideal in C[O, 1]. Then by Ref. 12, (Problem 1, p. 
879) there exists a closed subset F of [0, 1] such that 
Zc= if E C[O, 1] : /(F) = OJ. Clearly, irk} cF. 
Furthermore since p (A) = (A - r 1) (A - r 2)' •• (A - r n) 
E Z c, we must have F = {r k}' Therefore, ZC = 
if E C[O, 1] : /(rk) = 0 for 1 s k s n}. 

Lemma 6.2: Let Z be as in Lemma 6.1, and let 
L2[0, 1] be the square integrable functions with respect 
to Lebesgue measure 11 on [0, 1]. Then Z is dense in 
L2[0, 1]. 

Proof: Let / E L2[0, 1], and let ( > 0 be given. Now 
C[O, 1] is dense in L2[0, 1] so that there exists 
g E C[O, 1] such that II/ - gil ::s d3. Let K be a bound for 
g, and let T} = mini Ir k - r i I: lSi, k s n}. Choose a 
such that 0 < a < mini (2 19K2, T}} and let 

Let 

h(A) = g(A) . [1 - 2nl0) inf{ IA - Ill: /l E E'}]. 

Thenh =gonE' and)h -gl::s Igi ::sK-. Therefore 
J Ih(A) -g(A)1 2dA = Elh(A) -g(A)1 2dA ::sK2/l(E)::s 
K 2 a < (2/9. Therefore Ilg -hll < d3. Now hE C[O, 1] 
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and h(r k) = 0 for 1 s k s n. Then by Lemma 6. 1, there 
existsp E Z such that Ih -p I < d3. Then Ilh -p II < d3 
so that 

11/ -pil ::s 11/ -gil + IIg -hll + IIh -pil < E. 

Hence / E Z so that Z = L2[0, 1]. 

We need one further result before constructing the 
counterexample. This lemma holds on arbitrary logics L. 

Lemma 6.3: Let al === a2 === •. , === an be in L. Then 
there exists x E X such that x([- 11k, 11k]) = ak for 
1::s k s n. 

Proof: Define x by a(x) C {lin, 1/(n - 1), ... , ~, 1, 2}, 
x({ 11k}) :=: ak /\ a/'+1 for 1 s k < n, x({ lin}) = an and 
x({2}) :=: ai. It is straightforward to verify that x E X 
and x([-l/k, 11k]) :=: ak for 1 s k s n. 

Let H:=: L2[0, 1] and let {r k};;1 be an infinite subset of 
[0, 1]. For p E II let d(P) denote the degree of p. Let n be 
a positive integer and keep n fixed. For k = 1, 2, ... , n 
let 

Pk = {p E II : d(P) s 2n - k andp (r j) :=: 0 for 1 s j s k}. 

Suppose 1 s k ::s i s n. Then for pEP i , d (P) s 2n - i s 
2n - k and p (r j) = 0 for 1 s j s i and, hence, for 
1 ::s j s k. Thus P E P k , and consequently PI ;2 P2 ;2 ••• 
;2 P n • Now for 1 ::s k s n, Pk C {p C II : d(p) ::s 2n - k} 
which is a (2n - k)-dimensional subspace of H. There­
fore'Pk is finite-dimensional and consequently closed. 
Thus PI === P2 === ••• ===Pn are closed subspaces of H. 
Then by Lemma 6.3, there exists a self-adjoint operator 
An such that An ([ - 11k, 11k]) :=: Pk for 1 ::s k s n. 

Thus we have a sequence An of self-adjoint operators 
such that An([- 11k, 11k]) = {p C II: d(P) ::s 2n - k and 
p(r j ) = 0 for 1 s j s k} for 1 s k::s n. We show now 
that this sequence gives a counterexample to Egoroff's 
theorem. 

Lemma 6.4: An ---7 0 everywhere. 

Proof: Let k be a positive integer. Then for i === k, 
Ai ([ - 11k, 11k]) = {p E II : d(p) s 2i - k andp (r j) = 0 
for 1 s j s k}. Then for n === k, 

n A i ([-l/k, 11k]) = n {p E II: d(p) ::s 2i - k and 
~n Pn 

p (r j) = 0 for 1 s j s k} 

= {p E II : d(p) s 2n - k and p (r j) = 0 for 1 s j s k}. 

Then as n;;'1 Ai ([-11k, 11k]) <;;;. n;'2 Ai ([- 11k, 11k]) C;;; "', 

= U {pEII:d(p)::s2n-kandp(r j )=Ofor1::Sj::Sk} 
n=k 

= {p E II : p (r j) = 0 for 1 ::s j ::s k}. 

By Lemma 6.2, this set is dense in H. Therefore, for 
k = 1,2, ... , 
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Therefore,A n ~ 0 everywhere. 

Lemma 6.5: For every state m on L(H), An /7 A 
a.u. [m]. 

Proof: From the proof of Lemma 6.4, for k == 1, 2, ... , 

Then 

00 00 00 

S == nun Ai 
k=l n=l i=n 

n {p E 11 : p (r j) == 0 
k=l 

for 1 :s j :s k} 

Then S == {oj and the result is immediate from Corollary 
5.4. 
Thus we have a counterexample to Egoroff's theorem. 
In fact, we have a sequence which converges a.e. [m] for 
every m, but fails to converge a.u. [m] for any m. 

We close this section with a few remarks on the com­
parison of the theory of Segal and Stinespring and that 
of this paper. Although we saw certain similarities in 
Secs.3 and 4, the developments of the two theories lead 
to quite different results. In Ref. 13 Theorem 3.1 
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Padmanabhan proves that Egoroff's theorem holds in the 
Segal-Strinespring theory. However, as we have just 
seen, this is not the case in our theory. Padmanabhan's 
proof relies heavily on the sub additivity of gages, while 
the theorem fails here essentially because of the lack of 
subaddivity for states. It would seem that the difficulties 
incurred in attempting to generalize function theoretic 
results to observables arise from the inherent nature of 
states, rather than from the convergence definitions we 
have taken. 
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We study the short distance behavior of the Green's functions of two operators in a soluble one-dimensional 
model of quantum field theory with dimensionless coupling constant. Integer power behavior does not occur. 
The leading terms of the Wilson expansion of two operators at short distances are determined. 

I. INTRODUCTION 

The behavior of Green's functions at short distances is 
one of the most interesting and controversial problems 
in quantum field theory.1 

The first fundamental step towards a deeper under­
standing of the problem was made by Wilson.2 He sug­
gested that the product of two operators satisfies the 
following asymptotic expansion at short distances: 

<P(x)<P(O) '" 6 ~n(x)On(O), (1 ) 
n 

where the functions ~n(x) become singular when x goes 
to zero. 

In free field theory these functions are integer powers; 
in perturbation theory this simple behavior is destroyed 
by the appearance of terms of the form g log(x2). 

Wilson suggested that the logarithms may sum to a 
power which may not be integral: This happens in the 
soluble two-dimensional Thirring model. 3 The exponent 
of the power is dependent on the renormalized coupling 
constant. 

In this work we prove that similar pathologies arise also 
in a very simple one-dimenSional model of quantum field 
theory. 

We study the Lagrangian 

~ = J dtH[<p(t)]2 -1m 2[<p(t)]2 -g[<p(tn-2}. (2) 

This is the only possible one with dimensionless coup­
ling constant: the Lagrangian density must have dimen­
sion 1, the field <p, therefore, has dimension -1. so that 
the only possible scale invariant interaction is g<p-2• 

This model can be solved using the equivalence between 
one-dimensional quantum field theory and nonrelativis­
tic quantum mechanics. The analogous quantum mecha­
nical problem is the quantal oscillator: a harmonic 
oscillator with centrifugal potential g /x 2 ; its solution is 
known from the early days of quantum mechanics. 4 

We find that for g > -i the Wilson expansion for the 
product of two fields <p is 

<P(t)<P(O) '" <P2(0) + tcP(O)<P(O) + 1t2cp(0)<P(0) 

+ Dta+2<p(O)-2a-11i[<p(0)], (3) 

where a = t(l + 8g)1I2 and all the neglected terms in the 
Wilson expansion are of the type tlliOi(O), where {3i is 
equal to n or to n + a + 2 with integer n. 

We note that <p-2a-11i[<p] is not an operator but a non­
bounded sesquilinear form, which i s defined on any 
finite linear combination of the energy eigenvectors. 
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This result is interesting because it shows that anoma­
lous dimensions in the short distance behavior are a 
very common phenomenon, which is present not only in 
relativistic quantum field theory, but also in the old non­
relativistic quantum mechanics. 

In Sec. II we rederive the analogy between one-dimen­
sional quantum field theory and nonrelativistic quantum 
mechanics. We write the solution of the quantal oscil­
lator and use it to compute the Wightman functions for 
the quantum field problem. 

In Sec. III we study the behavior of the two-point Wight­
man function at short distances and find anomalous 
dimensions. We extend our study to the two-point corre­
lation function between two arbitrary energy eigenstates 
and finally arrive at the Wilson expansion (3). 

In Sec. IV we briefly discuss our results and make an 
interesting but unproven conjecture. 

II. SOLUTION OF THE MODEL 

The Lagrangian of our one-dimensional problem is (2). 

One can easily find the associated Euler-Lagrange equa­
tion 

<P(t) = m 2<p(t) - 2g[<p(t)]-3 (4) 

and the Hamiltonian 

H = 1[1T(t)]-2 + 1m 2[<p(t)]2 +g[<P(t)]-2. (5) 

<p and 1T satisfy the canonical commutation relations 

[<P(t), 1T(t)] = - i. (6) 

In order to find the eigenvectors of the Hamiltonian we 
use the standard representation 

1T(0) ~ i fx . (7) 

This trick reduces the problem to finding the eigensolu­
tions of the following differential equation: 

C ~ + 1m2x2 + g) I/I(x) = EI/I(x); (8) 
\ 2dx2 x 2 

Equation (8) is the SchrOdinger equation for the quantal 
oscillator. The eigenfunctions and eigenvectors of Eq. 
(8) are 

En = m[2n + a + 1]; 

1/1 (x) = (4m)1/4 ( r(n + 1) ) 1/2 [mx 2](2a+1)/4 
n r(a + n + 1) 

( 
mX2) x exp --2- L,f[mx2], (9) 
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where a = f (1 + 8g)1/2,n is a nonnegative integer, and 
Lna(x) are the Laguerre polynomials. 5 

If g :s - i the spectrum of the Hamiltonian is no longer 
bounded below; there exists no ground state and the phy­
sical meaning of the problem is lost. 

The Wightman functions of the theory are 

where t/I 0 is the ground state of (8) and x(t} is the posi­
tion operator at time t in the Heisenberg representation. 
We note that x(t) satisfies the same equation of motion 
(4) as cp(t). 

If we define 

we have from (10) 

(01 cp(t)cp(O) 1 0) == L; e itEn lxonl2. 
n 

Similar expression can be easily derived for general 
N-point Wightman functions. 

III. THE WILSON EXPANSION 

(11) 

(12) 

In this section we compute the two-point Wightman func­
tion and study its behavior at small t. 

The formula for x On is 

XOn == -[2(1Tm)-l/2][r(a + n + l)r(a + l)r(n + 1)]-1/2 

X r(a + %)r(n - f). (13) 

In the limit n ~ co we find 

XOn '" [- f(1Tmt 1 /2] r(a+ %)r-1/2(a + 1)n-[(a/2)+(3/2)1. (14) 

This asymptotic behavior of x On implies that in the 
small t region 

(01 cp(t)cp(O) 1 0) = (11m) [Co + C 1'(mt) + C 2'(mt)2 

+C 3'(mt)a+2 +' .. ], (15) 

where Co' C l' C 2' C 3 are g-dependent constants and the 
neglected terms have higher power in t. It is interesting 
to observe that the power of the fourth term is not integ­
ral and is a continuous function of the coupling constant. 

We now look for the two-point correlation function be­
tween two arbitrary energy eigenstates sand r. 

We need only to compute the asymptotic behavior for 
large n of xsn • 

If we decompose 

s 
L sa(x2m) ==.0 kbg(x2m)k 

o 

we find, using Eq. (9), that 

1 ( r(s+1)r(n+1) )1/2 
xsn = m 1 /2 r(a +s +l)r(n +1 +a) 

x ± (bs r(a + k + %)r(n - k - f») 
o k \k r(n + l)r(-k - t) 
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(16) 
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1 s 
'" -- rl/2(s + 1)r-1 / 2 (a + s + 1) L; 
m1~ 0 k 

X [r(s + k + %)b
k
sn-(a/2)-(3/2)-k]. (17) 

The terms proportional to bk
s with k ,r. 0 go faster to 

zero. The final result for small t is 

(r Ix(t)x(O) 1 s) == 1.- [Dr,s + Dr1·s. (mt) + Drs. (mt)2 
m 0 2 

+ D ( r(s + l)r(r + 1) ) 1/2bsbr(mt)2+~ (18) 
3 r(a + s + l)r(a + r + 1) 0 0 

where DO's, Di's ,D2,s are constants dependent on g, r 
and s, but D 3 is a function of only g. b & can also be de­
fined as 

bs == lim 1 r(a + s + 1) (mx2)-(2a+1)/4t/1 (x) (19) 
o x->O (4m)1/4 r(s + 1) s , 

so that (18) is equivalent to 

(r 1 x(t)x(O) 1 s) '" (r 1 x 2(0) 1 s) + t (r 1 x(O)x(O) 1 s) 

+ tt2 (rlx(O)x(O)1 s) + t a+2 tD3 J t/I;(x)t/ls(x)x-2a -1 

x 6(x) +.... (20) 

The coefficient of ta+2 can also be interpreted as the 
mean value of the sesquilinear form x-2a - 16(x) between 
the states. 

Equation (20) can be rewritten in operational form, and 
in this way we find the Wilson expansion (3) for the pro­
duct of two fields. 

We note that the operational form of the short distance 
Singularities is mass independent, and the index of the 
power depends only on the dimensionless coupling con­
stant. 

One can investigate the general form of the neglected 
terms, computing the exact two-point correlation func­
tion. This can be done by inserting in (18) the exact 
expression (17) for xm ' and not its asymptotic expansion. 

One finds 

(r 1 x(t)x(O) 1 s) = e- ir .1m 
( r(s + l)r(r + 1) ) 1/2 

m r(a+s+l)r(a+r+1) 

X F(- k - t,- k'- t; 1 + a; e imt ). 

Using the well-known decomposition of the hypergeo­
metric function 5 , we arrive at 

(rlx(t)x(O)ls) = e- irtm 
( r(s + l)r(r + 1) ) 

m r(a + s + l)r(a + r + 1) 

X Bk ±k' bks,b;: [r(a + k + k' + 2) 
o 0 

x F(- k - t, k' - t;- a - k - k' -1; 1 - e imt ) 

+ [1- e irnt j2+a+k+k' 

r(- a - k - k' - 2)r(a + k + i)r(a + k' +~) 
X 1 1 

r(- k - "2)r(- k' -"2) 

(21) 

(22) 

xF(a +k +%,a +k' +i;a +k +k' +3;1-eimtl 
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The first term generates short-distance singularities 
with integer powers, and the second term contains only 
powers of the form n + a + 2. (The hypergeometric 
function is regular at the origin.) 

IV. CONCLUSIONS 

The results of our study show that in a one-dimensional 
model of quantum field theory with dimensionless coup­
ling constant, the fundamental field does not change 
dimension; but operators with anomalous dimension 
appear in the Wilson expansion of the product of two 
fields. The dimension of these operators is coupling­
constant dependent. 

We also find a very simple expression for the leading 
anomalous term of the Wilson expansion. 

The next step along this line of work is to study other 
models with singular potential and with dimensional­
coupling constant. Our feeling is that in this model too 
there are nonintegral powers in the short-distance 
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Wilson expansion; but the anomalous dimensions should 
not be coupling-constant dependent. It would be very 
interesting to verify this conjecture. 
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We introduce a new kind of Pad€! approximants for Legendre series based on the solution of a nonlinear 
system of equations. These Pade approximants have many properties in common with the well-known Pade 
approximants for Taylor series. In the examples studied here, the poles and zeroes of the Pade approximants 
lie on the cut and separate each other-a property which one expects to hold in general for Pade 
approximants. A proof of convergence follows the same lines as for Taylor series. Moreover, it turned out 
that these nonlinear approximants converge more rapidly than the linear approximants introduced in an 
earlier work. They may become a po:.verful tool in the summation of Legendre series. 

1. INTRODUCTION 

In a recent paper we have introduced Pade approximants 
(PA's) for Legendre series, which were obtained by 
solving a linear system of equations-as it is the case 
for PA's for Taylor series. However, "linear" Legendre 
PA's do not have the property that their first expansion 
coefficients agree with the first coefficients of the 
original series. If one wants to define PA' s for Legendre 
series which have this property, one has to solve non­
linear equations and we call these PA's "nonlinear" 
Pade approximants. 

These nonlinear PA's have some interesting properties, 
which we demonstrate by numerical calculations. First 
of all, they can improve the rate of convergence of a 
convergent series quite remarkably, and also they can 
give very good results even when the series diverges. 
Expanding the PA in a Legendre series, one can recover 
higher coefficients of the original series to a high pre­
cision. Furthermore, in the cases under conSideration 
all the poles lie on the cut and are separated by zeroes­
a property which one expects to hold in general for PA's. 
The residues of the poles give us the imaginary part on 
the cut with reasonable accuracy. 

A proof of convergence is valid for these PA's, and it is 
hoped that the nonlinear PAts will have many other pro­
perties of PA's for Taylor series, such as, e.g., the pro­
perties proven for Stieltjes functions. 

There should be many physical applications of these non­
linear PArs as all problems of scattering theory involve 
Legendre series or related series. Especially we have 
in mind application to phase shift analysis. Fitting an 
experimentally known scattering amplitude with a PA­
ansatz with a limited number of parameters, one may 
obtain information about higher coefficients by expanding 
the PA. 

2. THE NONLINEAR APPROXIMANTS 

The definition of Pade approximants (PA's) for Taylor 
series can be made as 

f(Z)QM(Z) - Pzy(z) = AZM+N+l + (1) 

or equivalently 

(2) 

where P Nand Q M are polynomials of degree Nand M, 
respectively. By introducing PA's for Legendre series, 
analogous definitions lead to different approximations 
with completely different properties. The reason is that 
in the expansion of a product of Legendre polynomials 
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more than one term contributes: 
i+k 

Pi (z)Pk(z) === 6 a/i,k)PI(z). 
1=li-kl 

(3) 

In analogy to Eq. (1) we have introduced PA's for Legen­
dre series in a recent paperl by the definition 

( 4) 

(L = 2M + N) and discussed applications to the cross­
ing of Feynman graphs. 

In this paper we are concerned with the definition analo­
gous to Eq. (2), which now reads 

or explicitly 

(6) 

where the a i are the coefficients of the expansion of f(z) 
into a Legendre series. We will show that the deter­
mination of the n i and d; leads to a linear system of 
equations for the nj and a nonlinear one for the di • 

Putting do:::: 1, we expand 1/5M in a Legendre series: 
1 1 

SM = doPo + d1P1 + ... + dMPM 

Performing the projection into partial waves, we have 

l=O, ••• ,M-l, 

where we assumed that the roots Sv of the polynomial 
SM are not degenerate, Qo being the Legendre function of 
the second kind and index O. 
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We obtain the higher coefficients recursively: 

2M + 1 ( M-l d ) 
DM = --- 1 - 6 --A-DA 

d M A~O 2A + 1 

and 

D - _ 1 M+~ ( !(!, d a(~'A») D 
M+v - dMaJM,M+v) Af>:o ~ ~ v A' 

with 

AO = max(O, 1/ - M), 

a~' A) being the coefficients in Eq. (3). 

Equation (6) now reads 

1/ = 1,2,3,"', 

(noPo + n1P1 + .,. + nNPzv)(DoPo + D1P1 + 
+ DM-1PM-1 + ... ) 
= aoPo + a 1 P1 + ... + aM+NPM+N + .... 

Using (3) and equating the coefficients of Legendre poly­
nomials with equal index on both sides of this equation, 
we finally obtain the follOwing system of equations for 
the coefficients n i (i = 0, ... , N), and di (i, ... ,M): 

N A+V 

"" n "" D a (~,V) - a D v D ~ A - A' 
v=Q ~~IA-vl 

A = 0, . .. ,N+ M. (7) 

This is a linear system of equations for the nv (A = 0,1, 
• • . , N) and a nonlinear system for the d~ (A = N + 1, 
... ,N+M). 

Solutions of the nonlinear system have been found using 
the fitting routine FIT4 , developed by W.Anderson and 
T. Doyle. If the nonlinear equations are written in the 
form 

f1(d1, d2, ••• , dM) = 0, 

f2(d v d2, ••• , dM) = 0, 

FIT 4 searches for a minimum of 

cp = if + t:f + ... + f;j, 

which in the case of a solution should be equal to 0. It 
turned out that the system of equations (7) has more 
than one solution in general, but only one solution with 
all poles Sv outside the region - 1 ::s z ::s + 1 has been 
found in the cases under consideration. 

We finally remark that the PA defined by Eq.(4) does 
not have the property that its expansion into a Legendre 
series has its first coefficients equal to the first co­
efficients of the original function. As a consequence, the 
proof of convergence given in Ref. 1 is invalid for those 
PA's, but is valid for the nonlinear PA's introduced 
here. For completeness we recall the following theorem: 

Theorem: Let Qk(Z) be any infinite sequence of 
[N,M] PA's to a formal Legendre series where M + N 
tends to infinity with k. If the absolute value of the Q k 

is uniformly bounded in the ellipse (its boundary in­
cluded) with foci at + 1 and - 1 and semimajor axis A, 
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then the Q k converge uniformly in the ellipse with semi­
major axis a, a < A to an analytic function f (z), the 
Legendre series of which has a semimajor axis of at 
least A. 

In the proof given in Ref. 1 we only have to replace 
2M + Nby M + Nwherever it occurs. 

3. MATHEMATICAL EXAMPLES 

In order to test the accuracy of the nonlinear PA's, we 
calculate them for some Legendre series for which the 
series is exactly summable. We are particularly inter­
ested in the improvement of convergence, the expansion 
of the PA's in a Legendre series, and whether or not any 
information can be obtained about the imaginary part on 
the cut. 

A. Generating function of Legendre polynomials 

We test the PA's for 

f( z) = 1 ~ IP() 
..j 1 _ 2az + a2 = l~ a I z . 

Choosing a = 0.3, the cut starts at Xc = (1 + a2 )/2alo•3 
= 1. 817. In Table I some numerical results are pre­
sented. Quite generally we observe that the nonlinear 
PA's are a better approximation than the linear PA's 
and that their improvement of the convergence is quite 
remarkable. Even when the Legendre series diverges 
(z = - 3. 5), they still give an extremely good result . 

TABLE 1. Shows the improvement of the convergence for the generat­
ing function. PS is the partial sum (lmax = 6), LP the linear [2, 2J-PA, 
NP the nonlinear [3, 3J-PA-both involving the same number of coeffi­
cients-and the exact function. 

z PS LP NP exact 

- 3.5 0.561 0.5600 0.5599 
- 1. 75 0.77 0.6838 0.683 591 0.683 586 
- 1. 0 0.769 40 0.769 236 0.769 230 81 0.769 230 77 
- 0.5 0.84824 0.848 188 4 0.848 188 95 0.848 188 93 
- 0.0 0.957 81 0.957829 0.957 826 26 0.957 826 29 
+ 0.5 1. 125 05 1. 125 080 1. 125 087 92 1. 125 087 90 
+ 1. 0 1. 4283 1. 428 49 1. 428 570 9 1. 428 571 4 
+ 1. 5 2. 13 2.26 2.290 2.294 
+ 1. 75 2.82 3.19 4.52 5.00 

In view of the good agreement of the nonlinear PA's and 
the exact function in the region - 1 ::s z ::s + 1, it is 
apparent that the higher coefficients of the expansion of 
the PA in a Legendre series must agree to a high pre­
cision with the expansion coefficients of the exact func­
tion. If we introduce r l = ajA/arxact (I = 0,1,"'), we 
have, e.g., in the case under consideration 

r7 = 0.9994, rs = 0.9975, r9 = 0.9937. 

This property might be of interest if an amplitude is 
known experimentally and one wants to decompose it in­
to its partial waves. Fitting the amplitude with a PA­
ansatz with a limited number of partial waves, one may 
also obtain some information about higher ones. 

Finally, we check whether or not the residues of the 
poles can give us any information about the imaginary 
part on the cut. If (a, b) is an interval on the cut con­
taining a pole p of the P A, we expect that 

b 

fa ImJ.(z)dz = -1T ReSf(z)iz=p (8) 

would be a good apprOXimation U+ refers to the upper 
side of the cut). The range (a, b) of the integration is 
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8 

7 

6 [4,4] 

5 

4 - [3,3] 

3 '[2,2] 
2 

[ 4,4] 

O+---~r----,-----,----'-----'----.-----" 
I 3 4 5 6 7 8 

FIG.!. For the generating function of the Legendre polynomials the 
mean values for the imaginary part on the cut are presented, calculated 
from the residues of the poles Su for the [2,2] through [4, 4]-PA's. The 
poles themselves are indicated by small vertical lines. 

certainly ambiguous, but the following choice seems to 
be a natural one: 

(1) from the beginning of the cut to the first zero, 

(2) two zeroes enclosing the respective pole. 

Our results are represented in Fig. 1 for the [2,2]­
[4,4] approximants, where the horizontal lines repre­
sent the mean values 

(- 1f Resj(z) Iz~s )/(b - a) 
v 

in the respective intervals (a, b) containing the poles slJ' 
which are also indicated by small vertical lines. We 
observe that actually the mean values at the poles them­
selves are a very good approximation. This property 
might be useful whenever one wants to calculate an 
imaginary part of a scattering amplitude in an unphysical 

3 

2 

O+---~---------------------------------' 

-I 

-2 

-3 

-4 

3 4 5 6 7 8 

FIG. 2. Same as Fig. 1 for the logarithm. 
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kinematical region, which is not accessible by other 
means. 

B. The logarithm 

Our second example is 

j(z) = In \~a: = [Qo(i) + Ql(})]PO(Z) 
+ I~[Q/+l(}) -QI-l(})]P/(Z). 
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In order to have a reasonable comparison with the for­
me.r case, we chose the cut starting at the same point xc, 
WhICh means 1/a = 1. 817. Our numerical results con­
cerning the improvement of convergence are presented 
in Table II and they are again very good. Our main 
interest is, however, the approximation of the imaginary 
part on the cut, which is constant in this case. Figure 2 
sh~ws that the poles and zeroes are further distanced, 
WhICh was to be expected. The accuracy at the beginning 
of the cut is reasonably good and one seems to observe 
a convergence with higher orders. 
TABLE n. Same as Table I for the logarithm. 

z PS LP NP exact 

- 3.5 1. 865 1. 8727 1. 8734 
- 1. 75 1. 42 1.4735 1. 474 13 1. 474 16 
- 1. 0 1. 237 97 1. 238 06 1. 238 0783 1.238 0784 
- 0.5 1. 042 62 1. 042 655 1. 042 653 57 1. 042 653 64 
- 0.0 0.799 537 0.799 521 0.799 527 67 0.799 527 58 
+ 0.5 0.477 65 0.477 65 0.477 627 52 0.477 627 55 
+ 1. 0 0.000 20 0.000 18 0.000 0013 0.0 
+ 1. 5 - 0.854 - 0.907 - 0.942 - 0.947 
+ 1. 75 - 1. 57 - 1. 90 - 2.24 - 2.51 

4. CONCLUSION 
We have shown in this paper that it is possible to solve 
the nonlinear equations for the "nonlinear" Legendre 
PA's. It turned out, however, that for the fitting routine 
to be able to find the solutions, a double precision ver­
sion for our equations was necessary (28 digits on the 
CDC 6600). For higher order PA's one loses signifi­
cance again and one has to develop a reasonable way of 
evaluating the recursion relations for the D" with suf­
ficient precision. Having this in mind, our procedure 
may become a powerful tool for the summation of 
Legendre series. 
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A representation theorem for a class of logics is established in which the elements of the logic are 
represented as subspaces of some real vector space. A partial converse is also proved, which allows the 
systematic construction of various kinds of logics. 

INTRODUCTION 

One of the outstanding problems in the theory of quantum 
logics is the characterization of the logic of all (closed) 
subspaces of a Hilbert space in purely internal terms. 
By the use of methods in projective geometry significant 
results have been obtained which guarantee that an ab­
stract logic is isomorphic to the lattice of all "closed" 
subspaces of some vector space (see, e.g., Refs. 1-4). 
One of the unsatisfactory features in this approach is 
that the field of scalars can be almost anything, and so 
no connection is established with the classical working 
model of physics. It is possible, by making further 
assumptions, to obtain that the field must be the reals, 
complexes, or quaternions, and also to rule out the non­
commutative case. 1 It is unfortunate, however, that these 
hypotheses although verified in the Hilbert space case 
are of a rather nonphysical nature; not bearing any 
immediate phYSical interpretation. It should be stressed, 
though, that the Piron result2 ,4 is quite sharp in case 
the scalars turn out to be the reals, complex, or quater­
nions, in that the vector space is then complete and the 
representing subspaces closed (in the topology genera­
ted by the norm). 

In this paper we shall follow a different method to rep­
resent the elements of our logic as subspaces of a real 
vector space (equally well we can do the same over the 
complex field, should we wish to); the conditions we 
shall impose on the logic are quite plausible physically, 
and are satisfied in the classical cases. We shall also 
obtain by reversing the arguments a method of con­
structing logics of a certain kind, starting with a real 
vector space, a bilinear functional, and a convex cone. 
This class of logics is actually wider than the one we 
obtained the representation for and could be useful for 
various purposes; it does not appear unreasonable to 
hope even for some classification theorems. 

Our method is elementary and in principle simple, 
while the arguments, although on occasion long, are 
baSically straightforward. 

We shall now describe the class of logics £, we shall be 
studying: the partial order:::: (implication) and the com­
pIe mentation (negation) will satisfy, besides the usual 
conditions (i) to (iv), three more involving properties of 
states, as follows: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
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For all A, BE.£' we have A :::: B implies B' :::: A' 
and (A')' = A. 

With /I. , V denoting infimum and supremum res­
pectively we have A /I. A' = 0, A v A' = I for some 
fixed 0, IE.£' and all A E. £'. 

The orthomodular law: If A :::: B, then A' /I. B 
exists and B = A V (A' /I. B). 

Existence of disjoint suprema: If .fl.i "" Ai for 
i "" j then the supremum z: Ai exists. 
Quite fullness 5 : If for all states m, rnA = 1 im­
plies mB = 1 then A :::: B. 

J. Math. Phys., Vol. 14, No.2, February 1973 

(vi) A weak form of the Jauch-Piron-Zierler axiom: 
if for some pure state rn we have m(Ai) = 1 for 
all i, then the infimum A of the {Ai} exists and 
mA = 1 also. 

(vii) The pure states of the system generate all states: 
there exists a measurable space X such that to 
each m there corresponds a probability measure 
11 on X and a map x -7 mx from X to the pure 
states with mA = Ix mx(A)dll(X). In other words, 
every state is a mixture of pure states. 

To obtain our representation theorem, we shall make 
two more assumptions on the behavior of the pure 
states. We shall state and make some preliminary use 
of them in the next section. The representation theorem 
follows, then the converse, and we conclude with some 
remarks and examples. We shall write ~ for the set of 
all states and ~ p for the set of pure states. 

ADDITIONAL HYPOTHESES AND PRELIMINARY 
RESULTS 

We first exploit property (vii). 

Proposition 1: For any A E. £',A "" 0, there exists a 
pure state m with mA = 1. Further, the set {m E. ~ pi 
mA = I} determines A. 

Proof: Take any m E. ~ with mA = 1 (see Ref. 5). 
Since we have mA = Ix mx(A)dll(X) for some probabil­
ity measure 11 on X and 0 :::: mx(A) :::: 1, we see that 
m x (A) = 1 a.e. with respect to 11 and so {m E. ~p I rnA = 
I} "" 0. In fact,mA = 1 iff mx (A) = 1 a.e., so that if 
{m E. ~p ImA = I} = {m E. ;Jflp 1mB = I}, then mx(A) = 
mx(B) a.e. and hence mA = 1 iff mB = 1 for any m E. ~. 
By (v) we then obtain A = B. 

We now conSider, for a fixed m E. ~p, the set of all 
A E. £, for which mA = 1; by (Vi) the infimum of this set 
exists and occurs with certainty in m. 

Notation: Write L m for the element inf {A I mA = I}. 

Definition: For n, 111 E. ~p, the number n(Lm) will be 
called the probability of transition from the state n to 
the state m; we shall write it as (n 1m). 

We are introduCing this terminology on the following 
grounds: since our relation:::: on events is being inter­
preted as implication, the event L m is the "ultimate 
cause" of anything that happens in 111; thus the probability 
of L m occurring in the state n is the probability essenti­
ally of n switching over to m. 

Hypothesis I: The transition probability is symmet­
ric in its two arguments: (nlm) = (mill). 

It is easy to see that this holds in the two claSSical 
models, the Hilbert space model and the ordinary pro­
bability theory model. 
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Now consider two pure states n, m and suppose that 
(n 1m) = 1. The interpretation of (n I m) as a transition 
probability forces us to the conclusion that nand m can­
not be distinguished; it also means that all events occur­
ring with certainty in one state also occur with certainty 
in the other. So we shall formulate our last hypothesis 
as follows: 

Hypothesis II: The set of all events occurring with 
certainty in some pure state determines this state com­
pletely. 

We shall use this in the form (n 1m) = 1 implies n = m, 
or the obviously equivalent form, Ln = L m implies 
n = m. 

It is now quite clear that we have the following: 

Proposition 2: If (m11 m) = (m2 1 m) for all m E ~P' 
then m1 = m 2 • 

Proposition 3: For every m E ~P' Lm is an atom of 
£. Conversely, for each atom A of £ there is a unique 
m E ~p with A = Lm' 

Proof: Suppose that B < L m , so that L m = B + C 
with C '" O. By Proposition 1 there is a pure state n for 
which nC = 1, so that n (L m) = 1 also. This implies 
n = m and therefore mC = 1 hence C 2: L m and B = O. 
The converse is clear from Proposition 1 and Hypothe­
sis n. 

Proposition 4: Every A '" 0 is the sum of (disjoint) 
atoms. 

Proof: Consider a maximal pairwise disjoint family 
of L m contained in A, which exists by PropOSition 1. 
Their sum, if distinct from A, admits a complement in A 
which will be not 0, and thus contains a new Ln disjoint 
from all the others; this is impossible by maximality of 
the chosen set. 

Remark: We have Ln disjoint from L m iff (n 1m) = O. 
Because if they are disjoint, then p(Ln) + p(L m) :s 1 for 
all states p, and taking p = n we find n(L m) = O. Con­
versely, if n(L m) = 0 we have n(L~) = 1, Le., Ln :S L~. 

THE REPRESENTATION SPACE 

Consider the vector space F spanned over the reals by 
the set ~P' Le., the space of all real valued functions on 
~p with finitely many nonzero values. Since ~p forms 
a basiS, we can define uniquely a bilinear form ( I ) on 
F by ('6 a i m i 1'6 b.n j ) = '6 a i bj (m i I n); this is, of 
course, symmetric, but may be degenerate. So, instead 
of F, we shall work with its quotient by K = {'6 aim i I 
'6 ai(milm) = O,for all m E ~p},and call it X. It is 
clear that X inherits the form ( I ) which is now non-
degenerate as well as symmetric. 

Each element of JC will contain at most one pure state 
because of Proposition 2, and in such a case we shall 
use the name of the state to denote the corresponding 
element of X. In this way ~ p is imbedded intact in X 
and evidently spans X. 

Notation: We shall write 1'.1 A for the set of all 
m E ~ p for which mA = 1 and H A for the subspace of 
X spanned by 1'.1 A' Also, for S .£ X we shall write S-'­
for the set {x I (y I x) = 0 for all YES}. 
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Proposition 5: For any A, B E £ we have A :S B iff 
MA 5MB• 

Proof: The first half is trivial, so suppose that 
MAS M B' Take any state m with mA = 1 and analyze 
into pure states: m = ix m"dJJ.(x); as before we have 
m,,(A) = 1 for almost all x and since m" is pure, we 
also obtain m,,(B) = 1 for almost all x. This implies 
that mB = 1 and by quite fullness we have A :S B. 

Proposition 6: For any A, B E £ we have A :S B iff 
HA SH B· 

Proof: Again half is obvious, so assume that H A ~ 
H Band m E M A' Since then m E H B we shall have 
m ='6 aim i with m i E MB,Le.,(mln) ='6 ai(miln) 
for all n E ~p. By symmetry we obtain n(Lm) = 
'6 ain(L m.); call bj the positive ai and - c k the nega­
tive a i to 6btain n(Lm) :S n(Lm) + '6 ckn(L m ) = 

k 
'6 bjn(L m .). But m

J
. E M B so Lm. :S B, hence n(Lrn) 

J J 

:S ('6 bj)n(B) for any n E ~ . Using (vii) again, we 
have this last relation valid for all n E ;nt, and by the 
lemma below we get Lm :S B or mB = 1. Thus MA S 
MB or A :S B. 

Lemma: If for some k> 0 and all states m we have 
mA :S kmB, then A :S B. 

Proof: Because then mB = 0 implies mA = 0, Le., 
m(B') = 1 implies m(A ') = 1, or B' :S A'. 

Remark: The above argument shows that m E ~ p' 
mE HA imply mA = 1, Le.,~p n HA = MA. 

Proposition 7: For any A E £ we have H A' ~ (H A )-'-; 
also,ifHB ~ (HA)-'-,thenB:sA'. 

Proof: To have '6 aimi E H A, means m i (A') = 1, or 
miA = O. Now if m E MA, then Lm :S A and hence 
m i (Lm) = O,or (m i 1m) = O. Thus ('6 aim i I m) = 0 
for any m E MA and hence for any element of H A' i.e., 
H A, ~ (H A)-'-. NowletH B :::' (HA)-'- and take mE M B • 

For each n E MA we then have (m I n) = O,or m(Ln) = 0 
for every Ln :S A. But by proposition 4 we have A the 
disjoint sum of such L~s, and thus mA = O. We have 
shown that mB = 1 implies mA = 0, or B :S A I by quite 
fullness. 

Corollary: For A, B E £ we have A, B disjoint iff 
the subspaces H A,H B are orthogonal. Hence H'L,A. is , 
the smallest space H B containing the direct sum of the 
spaces H Ai' 

Proposition 8: Let {m i } be a maximal orthogonal 
set of pure states in H A (hence in M A)' For any pure 
state m we have mA = '6 (m 1m). 

Proof: Our hypothesis means that {Lm.} is a maxi-, 
mal disjoint family of atoms contained in A, and thus 
implies that A is their supremum. So mA = '6 m(Lm.) 
='6 (mimi)' • 

The converse also holds: 

Proposition 9: Let {m i } be any orthogonal family of 
pure states. Then there exists a unique A E £, such that 
{m i } is maximal orthogonal in H A' 
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Proof: Let A be the sum of the corresponding L m i ' 

so that each m i is in H A' Now, if ( m I m i) = 0 for all i, 
we cannot have m E MAo because then mA = 1, while 
mA = ~ m(L m .) = O. Therefore {m i } is maximal 
orthogonal in H ~. Uniqueness now follows from Propo­
sition 8. 

We shall summarize now what the above propositions, 
put together, have established. Later we shall state this 
result formally and in some detail as a theorem: There 
exists a one-to-one correspondence between the ele­
ments of £ and certain subspaces of JC , so that all alge­
braic and order structure of £ is described in terms of 
inclusion and orthocomplements with respect to some 
bilinear nondegenerate form ( I ): further the pure 
states of £ correspond to vectors in JC and their values 
on the elements of £ again obtain via the form ( I ). 
Now we come to the details. First note that 'JIT p gener­
ates a convex cone (9, in JC having the elements of 'JIT p 
as extreme rays. Because (9, will consist by definition 
of all ~ a i m i where m i E 'JIT p and a i > 0 so that if m = 
~ aim;. we shall have ~ a i = 1 [since m(I) = 1] and 
therefore m would be a mixture of states, which is not 
possible. On the other hand no sum ~ a i rn i with a i > 0 
can produce an extreme ray without consisting of a 
single term. Also we see that for any u, v E (9, we have 
(ulv) ~ o. 

Theorem 1: There exists a vector space JC over the 
reals carrying a bilinear symmetric nondegenerate 
form ( I ) and containing a convex cone (9, so that: 

(i) For any u, v E (9, we have (ulv) ~ O. 

(ii) The set 8 of extreme rays of (9, generates JC, and no 
such ray is self-orthogonal. 

(iii) If ~ = {u/(ulu) 1/21 u E 81. then for any u, v E ~ 
we have (u I v > ~ 1 with equality iff u = v. 

(iv) For any orthogonal set of vectors {u i } in ~ and 
any u E ~ we have ~ (u I u j ) ~ 1 with equality iff 
{u j } is maximal. 

(v) For any orthogonal set {u i } in ~,let N be the set 
of all U E ~ for which ~(ul ui > = 1. Then 

(a) no linear combination of vectors in N is orthog­
onal to all U i • and 

(b) if {v j } is a maximal orthogonal family in N 
then ~ (ul u i ) =.0 (ulv) for all U E 'J1. 

Further, there exists a one-to-one correspondence 
A ~ H A between £ and certain subspaces of JC such 
that: 

(1) A ~ B iff HAS H B • 

(2) H A' is the largest subspace H B contained on the 
orthogonal complement of H A' 

(3) A subspace H of JC is in the range of this map iff: 

(a) ~ n H spans H. 

(b) for any maximal orthogonal family {u i } in 
~ n H and any U E~, the number ~ (ulu) de­
pends only on u; call it u(H). 

(c) u E ~ n H iff u(H) = 1. 

(4) There exists a one-to-one correspondence m ~ u m 
between the pure states of £ and ~ such that 
rn(A) = u m (H A)' 
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Proof: It is clear that (i), (ii), (iii) are valid by the 
very definition of the objects involved. Parts (iv), (v) 
are a restatement of Propositions 8,9. Parts (1) and (2) 
are Propositions 6 and 7, while (4) follows again from 
Propositions 8,9. It is part (3) that requires some ela­
boration. We have already noted that M A = 'JIT p n H A, 

so that (a) follows. Since (b), (c) are consequences of 
Propositions 8,9 all we have left is the converse. So 
consider any subspace H of JC satisfying (3) and take a 
maximal orthogonal family {m i} in ~ n H; let A be the 
Sum of the corresponding L m. so that the family {m i } , 
is also maximal orthogonal in H A' according to Proposi­
tion 9. For any m E 'JIT p we have m(A) = ~ (m I rn i ) 

which by (b) is the same as m(H); hence, USing (c), we 
have rn E MA iff rn E ~ n H so that Hand H A are span­
ned by the same set of vectors. 

THE CONSTRUCTION 

We shall now turn the argument around and show that 
under certain conditions a suitable family of subspaces 
in some real vector space constructed as described be­
low will form a quantum logic £. 

So we conSider a real vector space JC with a bilinear 
symmetric nondegenerate form ( I ) and select a con-
vex cone (9, such that properties (i), (ii), (iii), (iv) of 
Theorem 1 hold. It is convenient to select our family £ 
in two stages. 

The family X consists of all subspaces K of JC such that: 

(i) ~ n K spans K. 

(ii) for any maximal orthogonal family {uJ in ~ n K 
and for any u E ~ the number ~ (u I u) depends 
only on U; call it u( K ), and note that 0 ~ u( K) ~ 1. 

The family £ consists of all K E X for which u E ~ and 
u(K) = 1 imply u E K. Partial order on £ is just inclu­
Sion; the orthocomplement A' of an element A E £ is 
defined to be the subspace of JC spanned by ~ n A.L. To 
show that A' E £, we shall need the following lemma: 

Lemma: If (u I u) = 0 where u, u i E ~ and {uJ is 
maximal orthogonal in A E £, then u E A.L. 

Proof: Take any v E ~ n A and augment it to a 
maximal set {v, Vj } in A; by (ii) we shall have ~ (u I u i ) 

= u I v + ~ (u I v), and, as (u I u) is 0, we have (u I v) = 0 
also. 

Proposition 10: For each A E £ we also have A' E £, 
and u(A') = 1- urAl for all u E ~. 

Proof: We first show that A' E X. Since ~ n A' ~ ~ 
n A.L and ~ n A.L spans A', we have that (i) is satisfied. 
Now consider a maximal orthogonal set {u j } in ~ n A' 
and a maximal orthogonal set { vi} in ~ n A; we shall 
show that {u j , Vi} is maximal orthogonal in ~. For if u 
is orthogonal to all these, then by the lemma it is in 
~ n A.L and we should be able to adjoin it to the family 
{u j } which cannot happen by hypothesis. Thus we have 
~ (ul u) +~ (ulv i ) = 1 for any u E ~,and thus 

~ < u lUi) = 1 - u(A), which means that (ii) holds. Final­
ly we need u(A') = 1 to imply u E A'; but as we saw, 
u(A') = 1 - u(A), and so we have urAl = O. This means 
(u I v) = 0 for any v E ~ n A, since any such v forms 
part of a maximal orthogonal set in ~ n A. So u(A') = 1 
means u E A.L, Le., u E A'. 
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Theorem 2: The map A --) A' defined above is an 
orthocomplementation on £: 

(i) (A')' = A. 

(ii) A ~ B implies B' ~ A'. 

(iii) A 1\ A' = 0, A V A' = I, where 0, I are the subspaces 
{o}, Je (evidently members of £). 

Proof: (i) By Proposition 10 we have u«A')') = u(A) 
for any u E 'J[. On the other hand we see that given a 
subspace B E £ we have U E B iff u( B) = 1 (provided 
u E 'J[): half of this is the definition of .J3, and the other 
half is obtained by imbedding u in a maximal orthogonal 
family to obtain u(B) (ul u) 1. Thus we have for 
any U E 'J[ that U E (A')' iff U EA. 

(ii) Same principle: Let A ~ B, or 'J[ n A ~ 'J[ n B; then 
It E B' iff u( E') = 1 iff u( B) = 0 which implies u(A) = 0 
or u(A ') = 1 or u E A'. 

(iii) Suppose B ~ A, B ~ A '; we must show that B = 0, 
Le., 'J[ n B =0. Taking U E ::n n B we obtain U E ::n A 
and U E 'J[ n A' so that u must be orthogonal to ::n n A; 
but this implies ( u I u> = 0 which contradicts condition 
(ii) of Theorem 1. Now suppose B ~ A, B ~ A' and 
choose maximal orthogonal sets {u i }, {V j } in ::n n A 
and 'J[ n A'. As before we have {it i ,vJ maximal orthog­
onal in ::n,and thus we obtain ~ <ulu j > + L) <ltlv) = 1 
for all It E ::no But since all u i and Vj are in B this 
means U E B for all u c": ::n, and as ::n spans Je we have 
B = JC. 

It does not seem possible to proceed much further in 
establishing properties of £ such as orthomodularity 
without further hypotheses on Je. Observe that we have 
used only four of the five properties listed in Theorem 
1. This fifth is precisely what we need to prove exis­
tence of suitable elements of £'. We shall therefore 
assume it from now on. 

Proposition 11: Let {u i } be any orthogonal set in ::no 
Then there exists a unique A E: £, with {u i } maximal 
orthogonal in ::n n A. 

Proof: Consider the set ::no of all U E: ::n such that 
L) (u I Uj) = 1 and let A be the subspace it spans; clearly 
all u j E: A. Also, any U E ::no is obviously in A, so 'J[ n A 
~ ::no and hence 'J[ n A spans A. Part (b) of property (v) 
completes the proof of A E X. Finally, let u(A) =: 1 with 
U E 'J[; since this means L) (ul Itj> = 1, we have U E: ::no, 
or U E A. 

Theorem 3: £ is orthomodular and any family of 
pairwise disjoint elements admits a supremum. 

Proof: Assuming A ~ B choose a maximal orthogo­
nal set {u i} in ::n n A and adjoin { v j} to obtain a maxi­
mal orthogonal set {u., v.} in'J[ n B. Let C be the ele­
ment of £, determined1by Jthe {vj } accordin~ t? Proposi­
tion 11. Since u j is orthogonal to Vj for all t,} we have 
the subspaces A, C orthogonal and hence disjoint as ele­
ments of £; clearly C ~ B. We must show that if Dis 
disjoint from A, D ~ B, then DC. So consider u E: 'J[ 
n D;then U E 'J[ n B and so L) (UIUi> + L) (ul71 > = 1. 
But D is disjoint from A and so ( u lUi> = 0 which im­
plies L) (u I 1!j> = 1, Le., u E C. 

A similar argument shows immediately that if the Ai 
are pairwise disjoint, by choosing maximal orthogonal 
families {u i , k} in the A i and putting them together, the 
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element obtained via Proposition 11 will be the supre~ 
mum of the Ai' 

We have thus established that the five conditions of 
Theorem 1 allow us to construct a quantum logic. We 
shall now investigate the existence of arbitrary infima 
(or dually suprema). 

Definition: We shall call two orthogonal sets {U i }, 

{1J } in 'J[ equivalent if for all u E 'J[ we have L) (u i It i ) 

=L)(ulvj ). 

Lemma: Two sets {uJ, {vj } are equivalent iff they 
generate the same element of £. 

Proof: Letting A, B be these two subspaces note that 
A = B implies equivalence since each will be maximal 
orthogonal in 'J[ n A. So assume equivalence; but then 
we have u(A) = u(B) for all U E 'J[, which implies A = B. 

Proposition 12: Let {Ai} be a family of elements of 
£ and 'J[o be the set 'J[ n ( 0 Ai)' The infimum of {Ai} 
exists if any two maximal 6rthogonal sets in 'J[o are 
equivalent, in which case the infimum is generated by 
anyone of them. 

Proof: Suppose the infimum exists, and call it A. 
For any orthogonal set {u i } in 'J[o we see that the cor­
responding element of £, will be contained in each Ai' 
hence::; A; so {u i } is in A, and since each vector in :.no 
is part of Some orthogonal set we have ::no ~ A or 
'J[ n A = ::no n A. Further, any maximal orthogonal set 
in 'J[o will generate A, and thus any two such will be 
equivalent. Conversely, assume that any two maximal 
orthogonal sets in 'J[o are equivalent and let A be the 
subspace generated by anyone of them; evidently A ~ Ai 
for all i. But if B ~ A i for all i, then ::n n B :; ::no and 
hence any maximal orthogonal set in 'J[ n B extends to 
such a set in ::no; this generates A and thus B ~ A. 

Proposition ]3: Every vector u E :.n gives rise to a 
state of £, via the map A -') u(A). 

Proof: Recall that the supremum of a family of dis­
joint elements is generated by the union of maximal 
orthogonal families of vectors, one for each element; 
this clearly implies additivity. 

Proposition 14: £ is quite full. 

Proof: Supposing that mB = 1 for all states In for 
which mA = 1, take a vector u E: 'J[ n A; then u(A) = 1 
and so u(B) = 1,or It E 'J[ n B. But this means A ~ B. 

EXAMPLES AND FINAL REMARKS 

Example 1: The Simplest case to consider is that of 
a commutative £'. Our basic hypotheses imply that £ is 
a complete atomic Boolean algebra and hence isomor­
phic to all subsets of some set Q; the points of Q are in 
a one-to-one correspondence with the pure states of £, 
via the map w~' Ii w' the Dirac measure at the point W. 

Thus distinct pure states are orthogonal and JC is a pre­
Hilbert space with respect to < I ). 

Example 2: Let £ now be the logic of all closed sub­
spaces of a Hilbert space H with inner product ( I ). 
The pure states being rays in H we identify them in the 
usual way to unit vectors in H. For any such state tJ; we 
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see that L l/J is just the ray of t/J and we identify it to the 
projection P 1P.: qJ -'> (qJ 11/1)1/1, so that (qJ 11/1) == qJ(Ll/J) = 
(P.p qJ I qJ) = I (qJ I t/J) 12 , Since the vectors E ai!./l i of JC 
can be identified to the maps !./I -'> E a i ( !./I i I If; ), we see 
that the vector u == E ai!./l i of JC gives rise to the map 
If; -'> E a i I (!./I i 11/1) 12 == ( T u 1/11 !./I) where T u is the opera-
torE a j 1/l;01/1j: Tu1/l = E a i (1/I1!./I;)1/Ii' Since a map 
of the form 1/1 ~ (A t/J 11/1) determines the operator A 
completely, we have defined a map It -'> T u from JC to 
operators on H, which is evidently linear. Each T u is 
self-adjoint since the a; are real, and of finite rank. To 
evaluate (u I v > in terms of T u' Tv, note that we can al­
ways assume that in the form T u == E a; 1/1; (9 !./Ii the 
vectors !./I j are a complete set of orthogonal eigenvec­
tors of T u with a j the corresponding nonzero eigen­
values; this means that we can write u == E a i 1/1; for the 
same a p 1/1 j' So we write v == E bj qJj with the same 
conditions imposed and calculate: 

(ulv) = ~ a i bj (1/I i lqJ) ~ ai bj l(!./I;lqJ)12 
l,J 1- ~J 

= ~ aibj(qJiI1/lj)(1/IjlqJi) 
',J 

== ~(r bj (1/Ii l 'Pj)'Pj I~ ak (1/I;11/Ik)!./Ik) 

=E (Tu !./I; i Tv 1/1;) = Tr(TuTv)' 
i 

This shows also that if T u == 0, then u = 0, so that we find 
JC imbedded in the space of Hilbert-Schmidt operators 
of H isometrically. 

Remark 1: It is interesting to observe that even if £, 
is given as a class of subspaces of a Hilbert space, our 
construction does not recapture the space except per­
haps in an indirect way. So Theorems 1 and 2 do not 
form a dual pair. 

Remark 2: It should also be noticed that it is by no 
means clear that the vectors in :n exhaust the pure 
states of £'; in fact we do not know whether they are pure 
states to begin with. It is therefore impossible without 
further deeper study to decide whether £', constructed 
according to the above satisfies all hypotheses of 
Theorem 1. To be more precise, we should rephrase 
this as follows: What geometric conditions on JC should 
we impose in order to have the hypotheses of Theorem 1 
satisfied? We shall see next an example of some J' for 
which some of these are violated. This question involves 
the calculation of the set;m, of all states of £', which 
appears to be a complicated problem as exemplified by 
Gleason's theorem. 

Example 3: Consider a pre-Hilbert space JC (over 
the reals) with inner product ( I ), choose a fixed vec­
tor a E JC of unit length, and let e == {u E JC I < a I ;t) 2:: 

~ 12 II u II}, It is straightforward to verify that e is a 
convex cone; we shall show that g = {u E JC I<a I u) = 
~ 1211 u II}. If this holds and u == v + w, with v, tV E e, 
then H2 II u II = (a I u) = (a 1(1) + (a I w> 2:: ~ 12 (II v II + 
II wll) so that u, v, lV are on a line. Conversely if (a I u) 
> 112 II u II and u is not on a line with a, we c~n find a 
scalar k such that ku = a + v for some VEe, which 
means that u is not extreme (e.g., we can ~ake 
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k = [II u II ( a I u) 

+ (1IuIl 2 -(alu)2)1/2]/(2(alu)2-lIuIl 2) 

the case a, u on a line can be treated Similarly. 

To verify the five conditions of Theorem 1, we let Pu = 
( a I u) a and Q u = u - Pu, so that PQ == Q P ::::: 0 and 
P + Q is the identity. We have IIQul1 2 == II ull 2 - IIPull 2 

= II It 112 - (a lu) 2, so that if u E e we obtain II Qull ~ 
~ /2 II ull. Therefore, for u, VEe we get (u I v) 
(Pu + Qulpv + Qv)::::: (Pulpv) + (QuiQv) = (alu) 
(alv) + (QuIQv) 2:: Hull Ilvll- Bull 111"11 == O. 

Since ( I ) is an inner product no ray is self-orthogo­
nal. To see that g generates JC we take W E JC and 
write W = Pw + Qw. Since either Pw or - Pw is in 8 we 
consider Qw = z, which is orthogonal to a; then for any 
scalar k we have (a la + kz) == 1 and so it suffices to 
find a k for which t II a + kz 112 ~ 1, which is evidently 
possible. Property (iii) follows from the condition that 
( I > is an inner product and all vectors in :n are of 
unit length lying on the same side of the hyperplane 
(a I u> ::::: O. Now we determine the ortho~onal sets in :n. 
Observe that (ulv)::::: 0 means t + (QuIQv)::::: 0 or 
(Qu IQtl) = - t; since II Qull = II Qvll = t, we obtain the 
orthogonality condition in the form Qu ::::: - Qv or u + v 
= 12 a, This means that the nonempty orthogonal sets 
in :n are either singletons or contain exactly two mem­
bers related by the above equation. Property (iv) now 
follows trivially. Finally we verify (v) for the case of 
an orthogonal set with two elements (the other being 
obvious) by noting that in this case N consists of all of :n. 
The structure of £, is now transparent. Except 0 and I 
the only other subspaces are one-dimensional and are 
just the various rays of :n. It is worth noticing that 
A' '" A.L. We can describe £, in an abstract way by con­
sidering a family of 4-element Boolean algebras 
{ill ALE A identifying all ° A'S to 0, all I A I S to I and tak­
ing their set union. The states of £, are in a one-to-one 
correspondence with the points of a Hilbert cube XAE A 

J A, where all the J A are copies of the interval [0,1]. If 
illA = {O,AA,A~,I} and m is a state, then m is com­
pletely determined by the numbers PA = m(A A); and 
vice versa, any such family of numbers produces a 
state of £, when assigned as values of the various A A' 

Thus a pure state of £, must be a corner point of the 
cube, since the convexity structure is preserved in this 
correspondence. This means that a state is pure iff its 
values are either 0 or 1; this cannot hold for any element 
of ~,Le., ~ n ;m p::::: 0. Further, this £, does not satisfy 
our JPZ property, because for A, B in distinct illA we 
have A 1\ B ::::: 0, while there exists a large number of 
pure states m with mA = m B == 1. 
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We present a uniform construction of all the principal series representations of the three-dimensional 
Lorentz group with generators constructed in terms of oscillator operators. In all cases, the Hilbert 
space and a hyperbolic generator have a simple appearance, while the other two generators give rise to 
non local transformations involving Bessel functions. 

INTRODUCTION 

The purpose of this paper is to present the unitary irre­
ducible representations (UIR's) of the group SU(l, 1) in 
a new form. This group is closely related to the group 
of Lorentz transformations 0(2, 1) in three-dimensional 
space-time, being in fact the "spinor group" of the 
latter; as such, the properties of its representations, and 
the ways in which these representations may be con­
structed' are of relevance in various contexts in ele­
mentary particle physics. 

We study here some properties of the principal series 
of UIR's of the group SU(l, 1); as is well known, this 
series is made up of a family of UlR's called the conti­
nuous series, and another family called the discrete 
series. 1 We will obtain a uniform description of the 
UIR's of both these series; this description is charac­
terized by the fact that the transformations generated by 
a particular hyperbolic ("noncompact") generator have a 
specially simple form.2 Being able to construct the two 
families of VIR's in very similar forms is interesting 
for the following reasons. A common technique for the 
construction of UIR's of a noncompact group is this: 
One considers (complex-valued) functions on a space on 
which the group acts transitively as a group of point 
transformations, and then defines the action of an ele­
ment of the group on a given function by making the for­
mer act on the argument of the latter as a point trans­
formation, that is, one essentially has a change of argu­
ment. In addition one includes a "multiplier" in this ac­
tion, subject to the associative law for group multi plica -
tion being valid. In this way, the action of group elements 
on functions is simple. To make the representation uni­
tary' one must next impose a suitable positive-definite 
scalar product on the functions considered, and ensure 
that this product is preserved under the group transfor­
mations. If this can be achieved by means of a local ex­
preSSion for the scalar product, then both the group ac­
tion and the Hilbert space have simple appearances; but 
in some cases, the scalar product becomes nonlocal, and 
then only the group action remains Simple. In a common 
method of construction of the UlR's of SU(l, 1), the con­
tinuous series of UIR's belongs to the former type, but 
the discrete series to the latter (we do not speak here of 
the exceptional series).3 We have imposed the require­
ment from the beginning that the Hilbert space have a 
simple form, with a local scalar product, for both kinds 
of representations, and that both representations be simi­
larly realized. We then find that the action of group ele­
ments is in general nonlocal, though the forms are rather 
similar in the two types of representations. This non­
locality is the consequence of demanding uniformity in 
the description. Of course, the Similarity in our construc­
tions of the two types of representations must be limited 
by the existence of basic differences between discrete 
and continuous representations. For example, the eigen­
values of a hyperbolic generator possess multipliCity 
one in the former and two in the latter. To be precise, 
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then, the uniformity lies in having as similar forms as 
possible for the Hilbert spaces and for the action of one 
chosen hyperboiic generator. 

In practical applications of the unitary representations 
of noncompact groups, many authors have utilized the 
technique of constructing the generators out of a set of 
harmonic oscillator creation and annihilation operators. 4 

Generally such constructions have led to a subset of all 
UIR's of the relevant group. [In Ref.4(a), however, all the 
UIR's of the universal covering group of SU(I, 1) have 
been constructed, using the method of complex rank 
tensors.] We use this oscillator operator method for all 
the principal series UIR's ofSU(I, 1). We describe the 
construction of the discrete series UIR's in Sec. 1, fol­
lowing brief comments on SU(I, 1) and its UlR's, and 
consider the continuous series in Sec. 2. 

1. REPRESENTATIONS OF THE DISCRETE SERIES 

We begin with a few remarks concerning the group 
SU(I, 1). This is the group of all two-dimensional com­
plex unimodular matrices of the form 

aii - f313 = 1; (1. 1) 

that is, the group of pseudo unitary 2 x 2 matrices. It 
has three generators which may be written J 0, J l' J 2; in 
a unitary representation, they are Hermitian, and their 
commutation rules (C R 's) are 

In the defining nonunitary matrix representation, we may 
identify the J's in terms of Pauli matrices as J ° -7 i0"3' 
J 1 -7 ii0"2,J2 -7 ii0"1' J o generates a maximal compact 
subgroup of SU(I, 1);J1 and J 2 are hyperbolic generators 
giving rise to noncompact 0(1, 1) subgroups. There are 
two kinds of discrete UIR's of SU(I, 1), the positive type 
Dt and the negative type D k , k = ~, 1, ~, .... In the 
former, J 0 has the eigenvalues k, k + 1, ... , 00, in the 
latter - k, - k - 1, ... , - 00; in both Dt and D" the 
Casimir operator Q == (J 1)2 + (J2)2 - (JO)2 has the value 
k(1 - k). 

Let us now introduce two sets of oscillator creation and 
annihilation operators aj and aj, j = 1,2, obeying the 
CR's: 

(1. 3) 

Then one can obtain a solution to the CR's equation (1. 2) 
by the choice 

J o = ~(ala1 + a~a2 + 1), 

J 1 = H(al)2 + (al)2 + (a~)2 + (a2)2], (1.4) 

J 2 = - h [(alP - (a 1)2 + (a~)2 - (a2)2]. 
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These are Hermitian, and since J 0 is positive definite 
this construction will lead to the D; UIR's.5 It is evi­
dent that if one introduces the Hermitian operator K by 

(1. 5) 

then all the generators commute with K, and the Casimir 
operator is a function of K (as a short calculation will 
show): 

(1. 6) 

The above construction using oscillator operators allows 
us to deal in a simple way with the eigenstates of the 
compact generator J 0 which is just the sum of oscilla­
tor Hamiltonians, so that these normalized eigenstates 
are generated from the common vacuum state 10) in the 
following familiar way: 

Im,n) = (m!n!)-1/2(al)m(a~)nI0), 
Jolm,n> = -Hm + n + l)lm,n). (1.7) 

Diagonalization of the Hermitian operator K simulta­
neously with J o involves taking suitable linear combina­
tions of these oscillator states keeping the total occupa­
tion number (m + n) fixed, and this leads to irreducible 
representations in the familiar form in which the com­
pact generator is diagonal. We are, however, interested 
in exhibiting the generator J 2 in a simple form and so 
proceed somewhat differently. The Hilbert space of the 
entire representation continues however to be spanned 
by the states 1m, n) • 

The representation of SU(l, 1) generated by J 0, J 1, and 
J 2 of Eq. (1. 4) is reducible, and is a direct sum of all the 
UIR's Dt , once each. To effect the reduction, we use 
configuration space variables. In terms of Cartesian co­
ordinates x v x 2 varying from - oc to + co, we have 

aj = - ~ ~j + a:J, aj = ~ ~j - a:) (1. 8) 

In the next step, we introduce radial and polar coordi­
nates Xl = r cose and X2 == r sine in terms of which the 
Hilbert space consists of functions f (r, e) for which 

1.2
n 1.00 Ilf(r, e)112 == 0 de 0 rdrlf(r, e)12 < co. (1. 9) 

Then the operator K and the generators J 0' J l' J 2 become 

K == ~ (1 - i aae) , 

1 ( a2 
1 a 1 ) J 0 == - r2 - - - - - + - (2K - 1)2 , 

4 ar2 r ar r2 

J 1 = -1 (r2 + £ + ~ ~ - r12 (2K -1)2\ , 
4 ar2 r ar J 

(1. 10) 

i (a ) J 2 ==-- r-+1. 
2 ar 

It is clear that by considering the action of these genera­
tors on functions f whose dependence on e is of the form 
e i (2k-l)e, where k can take on one of the values ~, 1, i, 
... , we get the UIR D". Therefore, restricting ourselves 
to one such UIR, the structure of the scalar product in 
the Hilbert space, and the generators, are 
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(f,g) = 100 
rdr!(r)g(r), o 

( 
d2 1 d 1 ) 

J o = t r2 - - - - - + - (2k _1)2 , 
dr2 r dr r2 

( 
d2 1 d 1 ~ J 1 = - t r2 + -- + - - - - (2k - 1)2 , 

dr2 r dr r2 

J ==-~ (r~+l) 
2 2 \' dr ' 

The scalar product is the same for all k, while the 
generators J 0 and J 1 depend on k. 6 

(1. 11) 

We now compute the form of the finite transformations 
generated by each J. Since J 0 and J 1 are second-order 
differential operators, the corresponding finite transfor­
mations will be nonlocal, while J 2 does give rise to a 
local transformation. We have 

(1. 12) 

For J 0 and J 1 we write 

[e iPJOf ] ( r) = J;; r'dr' L (k,+)( r, r'; Jl)f (r '), 
ivJ 1.00 ( (1. 13) [e 1](r) = r'dr'M k,+)(r,r'; v)f(r'). o 

The kernels L(k,+) and M(k,+) must be solutions of the 
following boundary value problems: 

a 
- i - L(k,+)(r, r'; Jl) 

aJl 

1( a2 
1 a 1 ) == - r2 - - - - - + - (2k -1)2 L(k,+)(r,r'; Jl); 

4 ar2 r ar r2 

L(k,+)(r,r'; 0) == (l/r)o(r-r'); 

a 
- i - M(k,+)(r r" v) 

av " 

1( a2 
1 a 1 ) = -- r2 + - + - - --(2k-1)2 M(k,+)(r,r'; v); 

4 ar2 r ar r2 

M(k,+)(r,r'; 0) = (l/r)o(r -r'); (1. 14) 

The kernel L(k,+) is easily obtained from the knowledge 
of the Green's function for a simple harmonic OSCillator, 
since the operator J 0 given in Eq. (1. 4) is just a sum of 
two such oscillator Hamiltonians. 7 That is, the solution 
to the boundary value problem 

- r2 - - - - - - - - 9 (r,r'; e, e'; Jl) 1 ( a2 
1 a 1 (

2
) 

4 or2 r or r2 0 e2 

= -iaaJlg(r,r'; e, e';Jl), 

g(r,r'; e, e'; 0) = (l/r)o(r -r')6(e - 8') (1.15) 

is known to be given by 

g(r,r'; e, e';Jl) = (i/21T sinh.) 

x exp{-i[(r2 + r,2) cos~Jl-2rr' cos(e-e'l]/2 sin~Jl}. 
(1. 16) 

(The dependence of 9 only on e - e' reflects the fact 
that the operator K commutes with J 0') It follows that 
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we obtain the kernel L(k.+) obeying Eq. (1. 14) by just 
making a Fourier decomposition of S in the variable 
() - ()', and picking up the term with the behavior 
e i(2k-1)(e-e') 

L(k.+)(r,r'; /1) == (i/27T sini/1) exp[- i(r2 + r,2) cot-!-/1] 

x J: 1f 
d(}e ia case e- i (2k-1)S 

== (e ink/sini/1) exp[- i(r2 + r'2) cOt-!-/1]J2k_1 (a) (1.17) 

where a == (rr'/sini/1) 

[J2k- 1 is the Bessel function].8 In checking that the pro­
per boundary condition is obeyed at /1 == 0, one needs the 
identity 

lim (7Tit)-1/2e iz 2/t == o(z). 
t-+O 

(1. 18) 

In a similar manner, the kernel M(k.+) may be found by 
starting from the Green's function for the "antiharmonic" 
oscillator which in one dimension has the Hamiltonian 
- i(d/dx2) - ix2. The Green's function for two such un­
coupled oscillators obeys 

-- r2 + - + - - + - - S'(r,r'; (), ()'; II) 1 ( a2 
1 a 1 a2

) 

4 ar2 r or r2 a ()2 

a 
== -i- S'(r,r'; (), ()'; II), 

all 
S'(r,r'; (), ()'; 0) == (l/r)o(r -r')o(() - e') (1.19) 

and is explicitly given by 

S'(r,r'; (), ()'; II) == [(i/27T) sinhi II) 

x exp{- i[(r2 + r,2) coshi 11- 2rr' cos((} - e')]/2 sinhill} 
(1. 20) 

Once again, the term going like ei{2k-1)(S-S') in the 
Fourier development of S' yields the required kernel 
M(k.+) obeying the second pair of Eqs. (1. 14): 

M(k.+)(r, r'; II) == (i/27T sinhi II) exp[ - ii(r2 + r,2) cothiv] 

x J: 1f 
deeibcasS e- i (2k-1)S 

where b == (rr' /sinhi II). 

The basic equations needed for this description of the 
UIR's of type Dj, are now obtained. For all values of k, 
the Hilbert space consists of complex functions on the 
positive real line with the scalar product given in Eq. 
(1. 11). Thus it has a form independent of k. The one­
parameter subgroup generated by J 2 has a simple action 
given in Eq. (1. 12), and is again k-independent. But the 
transformations generated by J 0 and J 1 are nonlocal, 
and the k-dependent kernels, involving Bessel functions, 
are given by Eqs. (1. 17) and (1. 21) respectively. 9 

The results for the UIR's Dk can be obtained quite 
easily from those given above. If the three operators 
J 0' J 1, J 2 give rise to the UIR Dt it follows that the 
operators - J 0' - J 1> J 2 give rise to the UIR D k • So the 
description of the UIR Dk assumes this form: The 
Hilbert space, as well as the action of the transformation 
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iyJ 
e • 2, are the same as befo re, being given by the first 
line of Eq. (1. 11) and Eq. (1.12), respectively. The uni-

t t i~J. ivJ • ary opera ors e 0 and e 1 are descrIbed again by 
equations having the same appearance as Eq. (1. 13), the 
only difference being that we now have new kernels 
L(k.-)(r,r';/1) andM(k,-)(r,r'; II) on the right. These new 
kernels are given in terms of the earlier ones by 

L(k.-)(r,r'; /1) == L(k.+)(r,r'; - /1), 

M(k.-)(r,r'; v) == M(k.+)(r,r'; - II) (1.22) 

We conclude this section with the following comment. It 
is interesting to see that our construction of the dis­
crete UIR's of SU(I, 1) has yielded the two UIR's Dil2 
along with all the others for k ? 1, even though the latter 
alone appear in the Plancherel formula for expanding 
a square integrable function on SU(I, 1) (along with the 
continuous nonexceptional UIR's).10 In contrast, in the 
next section we will see that similar constructions using 
oscillator operators lead to the continuous nonexcep­
tional UIR's alone, and not the exceptional series UIR's. 

2. REPRESENTATIONS OF THE CONTINUOUS SERIES 

To obtain the remaining representations belonging to the 
principal series, we consider in place of Eqs. (1. 4) the 
following set of generators: 

J 1 == i[(al)2 + (a 1)2 - (a~)2 - (a2)2], (2.1) 

J 2 == - h [(al)2 - (a1)2 + (a~)2 - (a2)2]. 

These are also Hermitian and obey the CR's of SU(1.1). 
J 2 is the same as before, while J 0 and J 1 are different; 
in particular, J 0 is no longer positive-definite. The 
Hermitian operator S defined as 

(2.2) 

can be seen to commute with all the J's and, in fact, the 
Casimir operator Q is a function of S: 

(2.3) 

This shows that we are dealing here with the continuous 
(nonexceptional) series of UIR's of SU(I, 1). To reduce 
this representation of SU(I, 1), we must note that in 
addition to commuting with S, the generators defined in 
Eq. (2. 1) are invariant under the unitary transformation 
that takes at, aj into - a., - a+, respectively. USing the 
representatIon equation (1. 8) for the oscillator opera­
tors, this transformation is just reflection in the plane, 
Xj -7 - x j • [Invariance under this reflection, which cer­
tainly obtains for the generators of the discrete series 
Eq. (1. 4), was not explicitly mentioned there because 
this operation is the same as rotation in the plane by an 
amount 7T, and those generators already commute with 
the operator that generates rotations, namely, (2K - 1)]. 
Using Eq. (1. 8), the Hilbert space appears as all func­
tionsj(x1>x 2 ) for which 

(2.4) 

(2.5) 
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The total Hilbert space JC splits into two orthogonal sub­
spaces JC+ and JC_ consisting, respectively, of functions 
I(X1, x2) that are even and odd under the operation 
xl ~ -Xl, X2~ -x2;both JC+ and JC_ are invariant 
under the transformations of SU(1, 1). On the other hand, 
since J 0 is one half the difference of two harmonic 
oscillator Hamiltonians, a general eigenvalue of J 0 is of 
the form t (n1 - n 2), with each n1' n2 taking one of the 
values 0, 1, 2, .... The corresponding eigenfunctions, 
which form a basis for JC, are just products of eigen­
functions for the individual oscillators. But since these 
individual eigenfunctions possess definite parity pro­
perties, it is clear that the product eigenfunction corres­
ponding to the pair (n1, n2) goes into (_1)n I +n 2 times it­
self under X j ~ - Xj while, acting on it, e2TIiJo has the 

eigenvalue (- 1)nC n
2 = (- 1)n I+n2 • Putting these facts 

together, it follOWS that in JC+, J 0 has only integer eigen­
values; and in JC_, J o has half odd integer eigenvalues. 
As a consequence, restriction of the original represen­
tation of SU(1, 1) to JC+ (JC_) and its subsequent reduction 
will lead to the continuous integral (half-integral) series 
of UIR's of this group. 

To perform this reduction, it is convenient to divide the 
Xl - x 2 plane into four equal regions, and introduce 
hyperbolic variables in each: 

1:X2~0, -x2<:;x1 <:;x2, x2=rcosh1), 
Xl = r sinh1); 

2:x1~0, -Xl <:;X2 <:;X1, x 1 =rcosh1), 
X 2 = r sinh 1); 

1':X2 <:;0, X2 <:; Xl <:; -X2' X2 = -r cosh1), 
Xl = - r sinh 1) ; 

2':x1 <:;0, x1<:;x2<:;-x1, x1=-rcosh1), 
x 2 = - r sinh 1) • 

(2.6) 
In each region, 0 <:; r < ct;, - CXJ < 1) < CXJ. A function 
I(xv x2) is now replaced by a set of four functions 
11(r, 1)),h(r, 1)'/l,(r, 1)'/2,(r, 1). If it belongs to JC., 
E = ± 1, it obeys h,(r, 1) = Eh(r, TJ)J2 ,(r, TJ) = E/2(r, TJ). 
From now on, we need only deal with one subspace JC. at 
a time. The integration measure dXldx2 becomes, of 
course, rdrdTJ. Uniformly in all regions, the operator S 
takes the form 

(2.7) 

Therefore, by considering functions belonging to JC. and 
whose dependence on TJ is e2isn , - CXJ < s < CXJ, which 
therefore amount to pairs of functions (fl (r)'/2(r», and 
evaluating the effect on them of the finite transforma­
tions generated by the operators of Eq. (2. 1), we will ob­
tain the continuous series urn for which Q = t + s2; it 
will belong to the integral class if E = + 1, to the half­
integral class otherwise. The action of J 2 is, as before, 
quite simple. For every continuous series UIR, of what­
ever kind, the Hilbert space, JC (c) say, consists of pairs 
I ~ {fl (r)'/2(r» with 

11/112 = f:rdr[1/1(r)12 + 1/2(r)12]<CXJ (2.8) 

and 

[ i;;J2f] ( ) _ ;;/2f ( U2) e i r -- e ire , i = 1,2: (2.9) 

For the other two relevant one-parameter subgroups, we 
write, for given E and Q = t + S2, 
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[eiPJO/L(r) = .t1 f:r'dr'L~;'·)(r,r';J.l)/j(r')' 
J-

[eiVJ1/L(r) = .t1 f: r'dr' M~;") (r,r'; v)/j (r'). 
)-

(2.10) 

We prefer to obtain these kernels first, and then mention 
the corresponding differential equations and boundary 
values, analogous to Eq. (1. 14). In the case of J 0' for 
example, we start with the form given in Eq. (2. 5). We 
know that the solution to the boundary value problem 

4
1 (XI + ~ - x~ + ~) S(x1, Xl; x 2, Xz; J.l) 

\ aX1 aX2 
il 

= - i - S(xv xi; X2, Xz; J.l) 
OJ.l 

g (Xl, xi; X2' Xz; 0) = o(x1 - xi)O(X2 - xz) 

is given by 

S(x1,Xi;X2,XZ;J.l) = (-1/27T siniJ.l) 

x exp{ - i[(xI + xJ.2 - x~ - x:?) cost J.l 

- 2(x 1 Xl - X 2xz)]/2 sint J.l}, 

(2. 11) 

(2.12) 

so the effect of e ipJo [Jo as in Eq. (2. 5)], on a function 
l(x1, X2) in JC. can be given explicitly. USing Eq. (2. 6) 
this reads 

[eiPJo/h(r, 1) = - (27T sintJ.l)-lf:rldr'(exp[h(r2 + r'2) 

x cottJ.l]r:dTJ'(e- ia cosh(n-n ') + Ee ia cosh(n-n'»)j1(r', 1)') 

+ exp[ti(r2 -r,2) cottJ.l] 

x i:d1)'[eiaSinh(n-n') + Ee-iaSinh(n-n')]h(r,,1)'») 

[eipJo/h(r, 1) = - (27T SintJ.l)-lf:r'dr'(exp[- h(r2-r'2) 

x cotiJ.l]i: d1)'(e ia sinh(n-n ') + Ee- ia sinh(n-n')}/1(r', 1)') 
+ exp{- h(r2 + r'2) cottJ.l) 

x r:dTJ'[e ia cosh(n-n') + Ee- ia cosh(n-n')]h(r', 1)'»)' 
where again a == (rr'/sintJ.l). (2.13) 

If we specialize to functions Ii (r, TJ) whose TJ depen­
dence is e2 i s n and carry out the 1) integrations, we get 
directly the kernels L~r') (r, r'; J.l). For example, from 
the first of Eqs. (2. 13), we have 

L ~i') (r, r'; J.l) = - (27T sint J.l)-1 exp[h( r2 + r'2) cott J.l] 

x i:d1)e2iSn(e-iaCOshn + EeiaCOShn). (2.14) 

This and similar integrals can be expressed in terms of 
Hankel and Macdonald functions. l1 Thus, we find 

L~i·)(r,r';J.l) = (i/2 sintJ.l)exp[ti(r2 + r'2) cottJ.l] 

[ 
rrS (2) ( ) -TIS (1) ( )] x e H 2is a - Ee H 2is a , 

L(~2')(r,r'; J.l) = - (7T sintJ.l)-l exp[ti(r 2 -r,2) cottJ.l] 

x (e TIS + Ee-TIS)K2iS(a), 
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1 ][ -1rS (1) ( ) ns (2) xcot"2fJ. e H2is a - Ee H2is (a)]. (2.15) 

Similar calculations can be made to obtain the functions 

M
(S,E) . . 
ij • We need now to work wIth the Green's functions 

for antiharmonic oscillators. Omitting details, the re­
sults are 

Mi;,E)(r,r'; v) = (i/2 sinhiv) exp[ii(r2 + r,2) cothh] 

x [ensH~21s(b) - Ee-lfsH~11s (b)], 

Mi~,E)(r,r'; v) = - (1T sinhhr 1 exp[h(r2 -r,2) cothh] 

x (e 1TS + Ee-ns)K2iS(b), (2.16) 

M~;,E)(r,r'; v) = -(1T sinhhr 1exp[-h(r2-r,2) cothiv] 

( -ns ns) 
X e + Ee K 2is (b), 

M~~,E)(r,r'; v) =(-i/2 sinhh)exp[-h(r2 + r,2)cothh] 

X [e-nsH?ls(b) - Ee7rsH~21s(b)1, 

where b == (rr'/sinh~ v) 

With these kernels, our construction of the continuous 
series urn's of SU(1, 1) is complete. For everyone of 
these UIR's the form of the fIilbert space is given by 
Eq. (2. 8) and the action of e "J2 , which is a point trans­
formation, by Eq. (2. 9). The other two one-parameter 
subgroups act as nonlocal transformations according to 
Eq. (2. 10), E being + for the integral and - for the half­
integral case.12 

As stated in the Introduction, the Hilbert spaces in which 
we have constructed both the discrete series and the con­
tinuous series urn's are very similar; all that has 
happened in going from the former to the latter is a kind 
of doubling of the space. This much difference has to be 
allowed for, considering the well-known properties of the 
hyperbolic generator J 2 : In any UIR of the discrete 
series, every real number is a possible (generalized) 
eigenvalue for J 2, and there is just one (generalized) 
eigenvector per eigenvalue; on the other hand, in any urn 
of the continuous series, the eigenvalues are the same 
but we have two eigenvectors per eigenvalue.13 

Now we may explain why in this section we preferred to 
obtain first the kernels Land M, and delayed writing 
down their defining differential equations. The point is 
that these kernels are different in the integral and the 
half-integral cases for one and the same value of Q, as 
they must be; and the E dependent terms in Eqs. (2. 15) 
and (2. 16) show the differences. But if we write out the 
boundary conditions and differential equations for these 
kernels in a purely formal way, the parameter E makes 
no appearance anywhere. USing the transformations of 
Eq. (2. 6) appropriately, and working purely formally, we 
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easily get the following: 

- i ~ L (S,E)(r r" II) 
a fJ. 'J " ,... 

1 ( a 2 1 a 48 2
) () 

== -4 -r2 + -2 + - -+ -2 ((J3)ikLk~,E(r,r';fJ.), 
ar r ar r 

L \~'€)(r,r'; 0) = (1/r)6(r - r')6 ij , 

o (s E) 
-i avMi/ (r,r'jv) 

= -- r2 + -+- -+ - ((J) M(S,E\r r" v) 1 ( 0
2 

1 0 48 2
) 

4 ar2 r or r2 3 ik 'J ", 

M~;'E)(r,r'; 0) = (1/r)6(r -r')6ij" (2.17) 

As mentioned, the parameter E makes no specific ap­
pearance here, which may seem somewhat strange. The 
difference between the integral and the half-integral 
cases lies in the delicate distinction to be drawn be­
tween the domains of these generators in the two cases, 
namely the kinds of function pairs (f1(r),j2(r» to which 
these formal differential operators may be applied. In 
order to avoid having to solve this problem of domains, 
we preferred to compute directly the effect of the finite 
group transformations, for each dass of continuous 
series urn's. 

'The standard reference for the UIR's of SU(I,I) is V. Bargmann, 
Ann. Math. 48, 568 (1947). A detailed account of the construction 
of these UIR's may also be found in I. M. Gel'fand, M. I. Graev, 
and N. Ya. Vilenkin, Generalized Functions (Academic, New York, 
1966), Vol. 5, Chap. VII. 

2The following papers describe the SU(I,I) representations in a 
noncom pact basis: (a) N. Mukunda, J. Math. Phys. 8, 2210 (1968); 
(b) J. G. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, 1. Math. 
Phys. 9, 2100 (1968); (c) A. O. Barut and E. C. Phillips, Commun. 
Math. Phys. 8, 52 (1968); (d) N. Mukunda, J. Math. Phys. 
10,2086,2092 (1969); (e) G. Linblad and B. Nagel, Royal 
Institute of Technology Preprint, Sweden (1969). 

JI. M. Gel 'fand e tal., cf. Ref. I. 
4See, for example (a) A. O. Barut and C. Fronsdal, Proc. R. Soc. A 
287,532 (1965); (b) Y. Nambu, Prog. Theor. Phys. 37, 368 
(1966); Phys. Rev. 160, 1171 (1967). (c) W. J. Holman and L. C. 
Biedenharm, Ann. Phys. (N.Y.) 39, 1 (1966); (d) A. O. Barut and 
E. C. Phillips, Ref. 2(c). 

5This construction of operators is simply related to the one used in 
Ref. 4(c). 

6This representation of the generators is the same, up to a similarity 
transforma tion, as the one obtained in Ref. 2(b). 

7R. P. Feyman and A. R. Hibbs, Quantum mechanics and path 
integrals (McGraw-Hill, New York, 1965), p. 63. 

8 Higher transcendental functions, edited by A. Erdelyi 
(McGraw-Hill, New York, 1953), Vol. II. 

9Using the asymptotic expressions for the Bessel functions (see Ref. 
8), one may verify that the boundary conditions of Eq. (1.14) for the 
Kernels are fulfilled. 

IOCf. V. Bargmann, Ref. 1. 
11 Integral transforms, edited by A. Erdelyi (McGraw-Hill, New 
York, 1954), Vol. II, p. 82. 

'2Using the asymptotic expressions for the Hankel and MacDonald 
functions (Ref. 8), one may verify that the boundary conditions for 
L,j(s, E) and M,/s. E) stated in Eq. (2.17) are satisfied. 

l3Cf. V. Bargmann, Ref. 1 (Appendix) and N. Mukunda, Ref. 2(a). 
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The electron network model of Coulson and Della Riccia is applied to describe a simple lattice 
consisting of two families of linear chains, coupled together. It is shown that the model displays 
resonances, at which the wavefunction is preferentially situated at one or the other family of chains, 
and that at these resonances, there is a livE divergence in the electronic density of states. 

INTRODUCTION 

There has been considerable interest in the appearance 
of anomalously high peaks in the electronic density of 
states of some metals which are much narrower than the 
respective matrix elements would seem to justify. In 
particular, the very sharp peak observed near the 
Fermi surface in the {3-W structure and its relationship 
to the chainlike one -dimensional features of this struc­
ture have been discussed by several authors l in an at­
tempt to relate the observed peaks to the well-known 
l/../E singularities at the edges of' one-dimensional band, 
making use of the tight binding approximation for the d 
band of these alloys. Due to the presence of a conduction 
band, mixing thoroughly with the d band, the description 
of the d band by means of the tight binding approximation 
is questionable, and it might perhaps be here described 
by resonances in the conduction band as suggested by 
Friedel2 and Heine. 3 

Following these considerations, it seemed of interest to 
get some more inSight into the way such Singularities 
related to lower dimensionality can appear in a system. 

We have used the directed bond electron network model4 

(ENM) in the form suggested by Coulson5 and Della 
Riccia 6 to calculate band structures and the denSity of 
states for a simple two-dimensional lattice related to 
the {3-W structure. It was found that the bands exhibit 
one-dimensional (1/../E) Singularities in the density of 
states. We then show that such singularities are a fairly 
general feature of the ENM and result from the appear­
ance of polygons and polyhedra as constant energy sur­
faces in two and three dimensions, respectively. We 
show that such energy surfaces always give divergences 
in the density of states, and discuss their nature. 

I. BAND STRUCTURE OF ENM MODEL 

The two-dimensional model lattice is described in Fig. 
1. It consists of two families of linear chains, one in 
the x direction and one in the y direction. The junctions 
on each chain are equally spaced (with spacing a) and at 
each junction there is a cross link to one junction on the 
perpendicular family (of length d and relative strength 
v). In the ENM model,4 the wave function between junc­
tions is a solution of the one-dimensional Schrodinger 
equation with a constant potential so that 

=E Sinq(~ - xaB)+E sinqx"B 
~as a slnql S sinql (1 ) 
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is the wave function on the bond connecting junctions O! 

and {3.7 In Eq. (1), Ea and Es are the amplitudes of the 
wavefunction at junctions O! and {3, respectively, l is the 
length of the bond, xaS is the distance along the bond, 
from junction O!, and E =q2 is the (one-dimensional) ki­
netic energy along the bond. Clearly q can be either real 
or imaginary. 

Equation (1) is supplemented by the continuity require­
ments at the junction5 

Ea = const, (2a) 

(2b) 

where i\.a is a parameter representing a 0 function poten­
tial and the summation is over all bonds connected to 
junction O!. 

This is in fact a slight generalization of the usual model. 
The parameters vaS allow us to give different strengths 
to different inequivalent bonds. It is fairly straightfor­
ward to see that such parameters arise naturally in the 
limiting process of Ref. 4 if the cross sections of the 
respective channels have a constant ratio in the limiting 
process. 

In addition because of the periodicity, we have 

I 
r~~~~~~~~~ 

FIG. 1. A two-dimensional network of two families of linear 
chains, coupled together. 

(3) 
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band A 

band B 
FIG. 2. Typical constant energy surfaces for the network of 
Fig. 1. The surfaces are frequently in the form of "squares" 
or" crosses" around r. 
E 

CI 

o 

M r x M 

FIG. 3. The energy as function of the momentum along the 
symmetry lines r-x, X-M, r-M. 
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where R",,,, is a lattice translation, a' a junction related 
to a by this translation, and k the crystal momentum. 

For the model lattice described in Fig. 1 this leads to 
the equations 

[ - 2q cotqa + 2q(coskxa/sinqa) - vq cotqdy,x 

+(vq/sinqd)Ey=Mx' (4a) 

[- 2q cotqa +2q(coskya/sinqa) - vq COtqdjE
y 

+(vq/sinqd)Ex=AEy (4b) 

for the amplitudes in the cell R = O. This leads to a 
transcendental secular equation which is most conve­
niently written in the form 

(5) 

where 

A( ) + 
v cosqd sinqa A sinqa 

q =cosqa - +---, 
2 sinqd 2q 

( 6) 

B( ) = _ v sinqa . 
q sinqd 

In general the transcendental equation (5) will have neg­
ative energy solutions as well as an infinite number of 
solutions with positive energy (real q). The most conve­
nient way of treating Eq. 5 was to set the energy (i. e., 
q) and regard the secular equation as an equation for the 
constant energy surface in k space. Typical constant­
energy surfaces are shown in Fig. 2. It is seen that 
these are generally in the form of "crosses" or 
"squares" around point r. 
In Fig. 3 we have plotted the energy as a function of k 
along the main symmetry directions in the Brillouin 
zone. The energy is given along the line from the origin 
(r) to the center of the zone boundary (X). From there 
to the corner (M) and along r -M. The bands were cal­
culated for the special case 

-A=v=l, d=1.22a. (7) 

It is of interest to note the formal similarity of the ENM 
secular equations, such as Eq. (5), with analogous tight 
binding equations with energy dependent overlap inte­
grals. This comes out most clearly if we compare Eq. 
(5) with the tight binding secular equation 

(EO - 2J1 coskxa)(Eo - 2J1 coskya) - J~ = 0, 

where 

Eo=A!~' Jl=(2~r, J2 =B/(:a;} 
This definition assures that the effective masses are 
equal. The energy dependent tight binding parameters 
Eo, J u and J 2 are plotted as a function of energy in 
Fig. 4. 

II. ONE DIMENSIONALITY 

(8) 

(9) 

For values of q such that 

B(q)« 1, (10) 

the coupling between the two families of chains becomes 
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weak. As a result the bands display strong one dimen­
sionality. A convenient measure of this is the parameter 

7) = [(ExlEy) - (EjE)]2. (11) 

It can be seen from Eq. 4 that 

1) = [(coskxa - coskya)IB(q)]2. (12) 

The numerator of (12) is of order unity for most of the 
Brillouin zone so that (10) leads to large 7). 

In Fig. 5 the one dimensionality (1) is plotted as a func­
tion of energy for k along the lines r -x -M. It can be 
seen that 7) has strong resonances and minima. 

III. DIVERGENCES IN THE DENSITY OF STATES 

Of particular interest are the divergences in 7). They 
occur when B(q) vanishes, i. e., for values of q such 
that 

sinqa=O, qa=nrr. (13) 

It is then possible to find nontrivial solutions of the basic 
equations of the ENM which vanish identically at all ver­
tices. For example, there are solutions for which the 
wave function vanishes on the y chains and d bonds but is 
nonzero on the x chains. It can be seen that such solu­
tions are a fairly general feature of the ENM model and 
will occur whenever there are paths traversing the lat­
tice which use only one type of bond. These solutions are 
obviously "one dimensional." In many cases they also 
lead to divergences in the density of states. The density 
of states N(E) is plotted as function of the energy in 
Fig. 6. At values of q for which sinqa = 0, q *- 0, the den­
sity of states diverges like 1/ll!. 
It is of interest to investigate this a little more closely. 

When solutions of Eq. (13) have a definite k along the 
chain, the energy becomes independent of the compo­
nents of k perpendicular to the direction of the path. In 
two dimensions this leads to a constant energy surface 
which is a straight line segment and in three dimensions 
a plane. The complete surface is then a polygon or poly­
hedron. In our model lattice these are the boundaries of 
the Brillouin zone when qa = rr and the lines (k x, 0)(0, ky) 
when qa=2 rr • 

On such a plane surface we have 

(
anE(k») 
(ak,,)" ",0, (14) 

where k" is a component of k in the plane. 

In many special cases the constant energy surfaces ob­
tained in this way have special symmetry properties so 
that 

(OE)=O (15) 
ak, 

from symmetry. The leading term in the expansion of 
the energy is then proportional to k; (where k, is the per­
pendicular component of momentum me~sured from the 
surface). This leads to a one-dimensional relation and 
therefore to a (E - Estl/2 divergence in the density of 
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FIG. 4. The effective tight-binding integrals as function of en-
ergy. There are violent oscillations near sinqa = 0, qa '" O. 
(Here, E=rr2,4rr2.) 

ONE - DIMENSIONAlITY 

1000 1000 

100 - 100 

10 10 

01 '---1J.LL--L.L----L_~--'----":~~---".lL_~~_'____~_'___'___________.J 0.1 
10 40 50 E 

FIG. 5. The "one dimensionalitY", as defined in Eq. (ll) as 
function of energy, for k along the symmetry lines r -X, 
X - M. When two bands overlap, the "one dimensionality" of 
the individual bands is shown. There are divergences when 
sinqa = 0, qa '" O. 

states at Es' Note that this holds for both two and three­
dimensional lattices. 

In the general case (15) does not hold and there is no 
singularity of this type. There is, however, still a di­
vergence in the density of states which results from the 
corners of the pOlygon in two dimensions and from the 
edges of the polyheder in three dimensions. 

In two dimensions it is obvious that each corner of the 
constant energy polygon is an extremal point of the 
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E 

FIG. 6. The density of states of the individual bands, as ftmc-
tion of energy. There are 1/,fE divergences when sinqa=O, 
qa ;" O. (Here, at E = jT2 and E = 41/ 2 .)The other peaks in the den­
sity of states correspond to "regular" Van Hove singularities, 
which should be logarithmic infinities for a two-dimensional 
system. The numerical accuracy of the present calculation is 
not sufficient to display those "soft" divergences. 

energy because the derivatives vanish along two differ­
ent directions. Moreover the extremum cannot be a 
simple minimum or maximum because the constant 
energy surfaces cannot cross the polygon edges. 

The simplest extremum is therefore a saddle point which 
gives a logarithmic singularity in the density of states. 
When the extremum is not a saddle point it has to be of 
higher order and gives a 1/m or even stronger singu­
larity in the density of states. This will happen, for 
example, when a saddle point is ruled out by symmetry 
or when more than two lines cross at one point (e. g., 
the origin). 

In three dimensions the situation is similar. Each edge 
of a constant energy polyhedron can be considered as a 
string of degenerate two-dimensional extremal pOints in 
the plane perpendicular to the edge. It is easy to see 
that this leads to a divergence in the three -dimensional 
density of states which is of the same type as the one 
resulting in two dimensions from the respective ex­
tremal point. A well-known case is the logarithmic sin­
gularity in the density of states of a bcc lattice in the 
tight binding approximation conSidering only nearest 
neighbors. 8 
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IV. CONCLUSION 

It is seen that the model lattice in the ENM displays res­
onances (peaks) and antiresonances (zeros) in the "one 
dimensionality"; and the peaks in the one dimensionality 
are associated with l/JE divergences in the density of 
states. The question arises, as to whether these prop­
erties of the mathematical model, have any physical 
reality. The essential feature of the ENM that gives rise 
to these properties, seems to be the absence of direct 
interaction between the "chemical bonds, " the interac­
tion being only indirect, via the vertices ("atoms"). In 
reality electrons cannot be assumed to be localized in 
infinitely narrow channels, and wave functions belonging 
to different bonds should overlap. This should smear out 
the resonances. Thus, the ENM has a chance to work 
only if bonds are reasonably far apart or otherwise iso­
lated. In the f3 - W lattice, the distance between equiva­
lent parallel bonds is rather large (twice the nearest 
neighbor distance): Therefore, the ENM may have some 
chance to be applicable there. 
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Structure of the combinatorial generalization of hypergeometric functions for 
SU(n )states. II 
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[n the construction of the general SUeS) states, the action of each individual lowering operators (raised to a 
power) operating on the semi maximal state leads to an operator-valued polynomial which is shown to belong 
to the class of generalized hypergeometric functions in the sense of Gel'fand (namely, they are Radon 
transform of linear forms). Three new functions are found at the SUeS) level and their content in terms of 
known lower-hierarchy functions are explicitly exhibited. The structure of the general SU(n) states due to the 
combined action of all lowering operators is quite complicated, but the action of each individual lowering 
operator taken one at a time may still be manageable for higher n, and, in the spirit of boson operator 
formalism, this may be one systematical way of producing high-hierarchy generalized hypergeometric 
functions. 

I. INTRODUCTION 

Previous work1- 4 shows that the combinatorics of the 
boson operator formalism in the construction of the 
SU(n) states provides a natural scheme for the appear­
ance of certain generalized hypergeometric functions. 
We recall that a general state is obtained by operating 
an appropriate string of lowering operators L.i (raised 
to a power) on the so-called semimaximal st:i'te, the 
latter being expressed as products of certain (anti­
symmetrized) creation operators acting on the vacuum 
state. As a result of pushing the lowering operators 
through the creation operators, the nonvanishing com­
mutators thus yield an operator-valued polynomial 
(operating on the vacuum). For the SU(3) state, this 
operator-valued polynomial is simply expressed as the 
Gauss hypergeometric function 2F 1 (a, b; c; x), as pointed 
out by Baird and Biedenharn,1 namely, 

I general SU(3) state) = const (product of antisymmet­
rized creation operators) 

x 2F1(a,b;c;x)lo). (1) 

Or, symbolically, the relevant ingredient reads 

SU(3): (q)n [aa] ~ Gauss 2F l' (2) 

where each factor of a in the bracket stands for an anti­
symmetrized (a i i ... i )6 that the lowering operator has 
to negotiate with: 2 S 

What is the generalization of the statement (1)? It was 
found3 .4 that a general SU(4) state which is obtained via 
a product of three lowering operators (L~)n, (L~)n, 
(L ~)n does not have a simple form, but may be regarded 
as folded products of known functions. In other words, 
at the SU(4) level the action of each individual lowering 
operator still yields a recognizable function, namely 

SU(4): operator 

(q)n[aaaa] 

(q)n[aa] 

(L~)n [aaaa] 

result­
ing 
N-fold 
sum content 

Appell function F 2 

Gauss function 2 F 1 

Lauricella function F~3l 

Gel'fand 
criterion: 
Radon 
transform 
of linear 
forms 

Yes 
Yes 
Yes 

(3) 
For higher-rank SU(n) states (n ~ 5), it turns out that 
our present repertory of generalized hypergeometric 
functions clearly is not adequate to accommodate even 
the action of each individual lowering operator. One has 
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to either invent new names for these generalized hyper­
geometric functions if one adopts the viewpoint that the 
boson operator formalism is a good way of generating 
(hopefully systematically) such functions, or alternatively 
one may try to exhibit the inner structure thereof in 
terms of known functions. 
In this paper, we examine the structure of the general 
SU(5) states, obtained by pushing through a set of six 
lowering operators, L~, L~, L~, Lj, L~, and L~ (each 
raised to a power). Their individual action can be sum­
marized as follows (the details are given in Sec. III): 

Gel'fand 
criterion: 

result- Radon 
ing transform 
N-fold of linear 

SU(5): operator sum content forms 

(L !)n [aaaaaa ] 3 Appell F 2 x 3F 2 Yes 

(q)n[aaaaa] 3 Appell F2 x 3F 2 Yes 
(q)n[aa] Gauss 2F 1 Yes 

(L ~)n [aaaaaaa] B Appell F 2 Yes 
x Lauricella Fpl 
x Lauricella F B(3) 

(q)n[aaa] 2 Appell F 1 Yes 

(L ~)n [aaaaaaa] 6 Lauricella F J6) Yes 

(4) 
The following remarks are obvious at the SU(5) level: 
(a) The operator (LVn[aa] yields the Gauss 2F 1 func­

tion. This result is analogous to the action of 
(L~)n[aa] at the SU(3) level, or that of (L~)n[aa] at 
the SU(4) level. 

(b) The operator (L~)n[aaa] yields F l' the Appell func­
tion of the first kind (in 2-variables). 

(c) The operator (L~)n[aaaaaaa] yieldsFD(6),the Lauri­
cella function of the fourth kind in 6-variables. 
Basically this is rather similar to the case (b) 
above, except that (L~)n here has to push through 
seven factors of a's. Evidently, the action of (L p-1 )n 
[(s + 1) factors of a] would yieldFD(s),and Laurl­
cella function of the fourth kind in s-variables. Note 
that FD(1) == Gauss 2F 1,FD(2) == Appell F l' 

(d) The operators (Ll)n, (L~)n, (L~)n yield three essen­
tially new functions of several variables. Two of 
them involve tripple sums and the other an eight­
fold sum. Instead of giving new names to these 
functions, we have exhibited their content as folded 
products of known functions. They are shown, how­
ever, to belong to the class of generalized hyper­
geometriC functions in the sense of Gel'fand5 as 
being the Radon transform of linear forms. 

Copyright © 1973 by the American Institute of Physics 263 
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II. GENERAL SU(5) STATES 

As is well known, a general 5U(5) state may be con­
structed by applying a set of appropriate lowering 
operators to the semimaximal state. 

! general 5U(5) state) == 

x 

m 15 m 25 m35 m 45 0 

m 14 m 24 m 34 m 44 

m 13 m 23 m33 

m 12 m 22 

m ll 

m15 m 25 m35 m 45 0 

m 14 m 24 m 34 m 44 

m 14 m 24 m 34 

m 14 m 24 

m 14 

= const (L~)n12(L~)n23(L~)n13(L;Vn34(L~)n24(LVn14 

X ( )V44( )n45( )v34( )n35( )V24 a 1234 a 1235 a 123 a 125 a 12 

x (a15t25(a1)v14(a5t15! 0). (5) 

The set of lowering operators L/ are defined in Ref. 6. 
Those with i < j ~ 3 appeared in the discussion of 5U(4) 
case. 3.4 L! reads explicitly 

L! == 812813E41 + 813E42E21 + 8 12E43 E 31 + E43E32E2 

(6) 
The exponents nij , lIij in Eq. (5) are shorthand notations 
as before,4 namely 

n ij == m ij - m ij- 1 , II ij == m ij - m i+1, j+1' (7) 

III. ACTION OF EACH INDIVIDUAL LOWERING 
OPERATOR 

By a straightforward calculation, the action of each 
(L.t)n operator on the relevant set of creation operators 
tu~ns out to be as follows: 

5tep 1, L!: 

A - ( )n45( )v34( )n35( )v24( )n25( )V14 = a 1235 a 123 a 125 a 12 a 15 a 1 , 

(8) 

= const(w o)n14A 

(-n 14 )k +k (-n25)kl(-n35)k2 W;1 W;2 
x:B 12 --

kl'k2 (1 +1I14-n14)k1(-S2-1)k2 k1! k2! 
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(9b) 

where 

const == [1I14 !/(1I14 - n 14 )!][(s2 + 1)!/(S2 + 1 - n 14 )!] 

x [(S3 + 2)!/(S3 + 2 -n14)!], (10) 

2 

S1 == 1114 + 1124 + n 25 , S2 ==:0 (lIi4 + ni+1,5)' 
i~1 

3 

S3 ==:0 (lIi4 + ni+1 5)' (11) 
i~1 ' 

Wo == a 4/a 1 , W 1 == a1a45/a4a15' W 2 == a124a5/a125a4' 

W3 == a1234a5/a1235a4' (12) 

As a generalized hypergeometric series in three vari­
ables, the expression (9a) does not seem to be a known 
function. Alternatively, Eq. (9b) shows that it may be 
written as a folded product of an Appell F 2 function (in 
two variables) with a 3F 2 function (in one variable). 

step 2,L~: 

B - ( )n 45-k3( )V34( )n35-k2( )k2( )V24 = a 1235 a 123 a 125 a 124 a 12 ' 

(13) 

(L~)n24B! 0) = const(u ot 24 B 

(-n 24 )1 +1 +1 (-n 45 + k 3 )1 +1 
x:0 123 23 

111213 (1 + 1124 - n 24 )1 +/ 
1 3 

where 

const == [1I24!/(1I24 -n24 )!][(s4 + 1)!/(s4 + 1-n24 )!], 

(15) 

(16) 

U o == a 14/a 12 , u 1 == a12a145/a14a125' 

u 2 == a15a1234/a14a1235' 

u 3 == a12a145a1234/a14a124a1235' (17) 

The expression (14a) in three variables does not seem 
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to be a known function, but Eq. (14b) shows that it has 
the structure of a folded product of Appell F 2 function 
with a 3F 2 function. 

Step 3,L~: 

(18) 

(19a) 

(19b) 

where 

const == v 34/(v34 - n 34 )!, (20) 

(21 ) 

For the purpose of the subsequent steps, it will be con­
venient to rewrite (21) with the aid of the identity 
a123a124S = a124a123S - a12Sa1234 as 

k4 _ '" (- k 4 )ks (a12Sa1234)kS 
w 4 - LJ 

ks k s ! a124a123S 
(22) 

This has the effect of simplifying the expressions (23), 
(29), and (33) in not having to include the factor (a124S)k4 

(which does not commute with L~, L5' nor a 134S with L~). 

Step4,L~: 

(23) 

(- n 24 + [1 + [2 + [3)0 +0 (-[1 -[3)0 +0 (-n 34 - k2 + l3 + ks)o +0 x __________________ ~2~7~ ________ 3~~B ___________________ 4~6 

(- s5 -1)0 +0 +0 +0 +0 
4 S 6 7 B 

(24a) 

(-1)07(-n 34 -k2 +[1 +ks +U4 )06(-n 3S +k2 +l1 +ks +US )0/-V24 +n24 -l 1 -l 3 )OB 

(-ss-1 +U4 +Us)o+o+o 
6 7 8 

where 

canst == [(V14 - n 14 + k 1 )! /(V14 - n 14 - n13 + k1)!] 

x [(SS + 1)!/(ss + 1 -n13 )!], (25) 

Vo == a 3 /a 1 , VI == a1a3S/a3alS' V 2 == a1a34/a3a14' 

V3 == a1a34S/a3a14S' V 4 == a123a4/a124a3' 

Vs == a123aS/a12Sa3' V6 == ala4Sa123/a3a1Sa124' 

V 7 == ala4Sa123/a3a14a12S' 

Vs == ala4Sa123/a3a12a14S' 

In Eq. (24b), we have for j = 1,2,3 

~ == uj + OJ+s' ~+s == Vj+s/Vj • 
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(27) 

(28) 

(24b) 

The expression (24a) does not seem to correspond to a 
known function. On the other hand, Eq. (24b) shows that 
it has the following structure: Appell function (in v 4' v s), 
Lauricella F J3) (in vp v 2 ' v 3)' and Lauricella F 13) (in v 6' 
v 7' v s). The last which is a generalization of the Appell 
F 3 function makes its first appearance at the SU(5) 
level. 

Step s,q: 
E = ( )n34+k2-13-ks-04-06( )n3S-k2-11+ks-OS-07 

- a 124 a 12S 

(L~)n23E I 0) = canst(llot 23E 

(-n 23 )r +r (-n 34 -k2 +l3 +ks +u4 +ue )r
1 x 6 1 2 

r1,r 2 (1 + V24 -n24 + l1 + l3 - US)r +r 
1 2 
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= const( /lot 23 E 

xF1(-n23;-n34-k2 +l3 +ks +a4 +as ' 

-n3S +k2 +ll +ks +as +a7;/l1,/l2)10). (30b) 

where 

const== (v24 -n24 +ll +l3-aS)!/ 

(v24-n24-n23 +ll +l3-aS)!' (31) 

/.1 0 == a 13/a 12 , /.11 == a12a134/a13a124' 

/.12 == a12a13S/a13a12S' (32) 

Step 6, L~: 

F = ( )Yl( )r2( )Zl+Z3- 03( )n 23-r1-r2 - a 134 a 13S a 14S a 13 
x ( )n24-Z1-Z2-Z3-;;2( )n 2S-k1+Z 2-;;1 a14 a 1S 

x (a1)V14-n14-n13+kl+Ol+02+;;3 (33) 

(L~t12F 10) = const(a 2 /a 1 )n12F 

x FzfS)(-n12;-n2S + kl -l2 + U1, 

-n24 +ll +l2 +l3 +U2, -ll- l 3 +U3, 

-n23 +r1 +r2, -rl' -r2; 

1 +v14-n14-n13-n12 +k1 +u1 +u2 +a3; 

x1,x2,x3,x4,xS,xs)10) (34) 

where 

const == (1'14 - n14 - n13 + k1 + U1 + a2 + (3)! / 

(v14-n14-n13-n12 +k1 +01 +a2 +a)!, (35) 
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Xl == a1a2S/a2a1S' x 2 == ala24/a2a14' 

X3 == ala23/a2a13' X4 == ala24S/a2a14S' 

Xs == a1a23S/a2a13S' Xs == a1a234/a2a134' (36) 

IV. GEL'FAND CRITERION: RADON TRANSFORM 
OF LINEAR FORMS 

One class of generalized hypergeometric functions has 
the property that they are Radon transforms of linear 
forms. It so happens that all the known low-hierarchy 
functions such as Gauss, Appell, and Lauricella func­
tions satisfy this Gel 'fand criterion. S 

From the expression (4), the simple functions associated 
with the action of each individual operator (L~)n, (L~)n, 
(L~)n obviously have this property. For the others, it 
is not apparent from their contents as folded products 
of simple functions. In general, the Gel'fand criterion 
which holds for each constituent may not be preserved 
under folded multiplication. However, it is rather re­
markable that the functions associated with the action 
of each operator (L!ln, (L~)n, (L~)n, at the SU(5) level 
still satisfy the Gel 'fand criterion. The proof of this 
statement, which consists of using well-known integral 
representation for each constituent and a simple change 
of variables, is left for the reader. 
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Two stability problems for the nonlinear sine-Gordon equation are studied. The stability of a class of time 
independent (static) solutions is studied using linear dynamic stability theory. An asymptotic approximation 
of the nonlinear transient response to small disturbances of an unstable static state is obtained by the two time 
method. Interpretations of the results are given for the continuous pendulum problem and for the Josephson 
tunnel junction. A proof of the validity of the asymptotic approximation is given. 

1. INTRODUCTION AND FORMULATION 

The one-dimensional sine-Gordon equation, 

<P tt - <Pxx + ,\2 sin<p = 0, (1. 1) 

has been used as a model to describe the dynamics of 
Josephson tunnel junctions and in a variety of other 
problems; see, e.g., Refs. 1-3 and references given 
there. The Josephson junction consists of two super­
conductor strips separated by a thin dielectric film. If 
the film is sufficiently thin, then there is a coherence 
between Cooper pairs of electrons on opposite sides of 
the film, and a superconducting tunnel current passes 
through the film. Josephson proposed that the tunneling 
current is given by J sin<P. Here J is a constant that 
depends on the thickness of the film and the temperature. 
<P is the difference in phases on opposite sides of the 
film of the Cooper pairs in the two superconductors. 
Dimensionless variables are used in (1. 1). For example, 
distance is scaled by the length D of the junction and 
time is scaled by D( cl) 1/2, where 1 is the transmission 
line equivalent series inductance per unit area and c is 
the capacitance of the film per unit area. 1 

The parameter ,\ 2 in (1. 1) is given by 

(1. 2) 

where (1i/2e) is the flux quantum. 

Scott2 has constructed a mechanical system whose 
equations of motion are approximated by (1.1). The 
system consists of a series of pendulums with a common 
horizontal axis of rotation. The axis is fixed in space. 
The pendulums oscillate in parallel planes. Further­
more, the pendulums are interconnected by an axial 
torsion spring. The spring resists the relative rotation 
of neighboring pendulums. We refer to this system as a 
continuous pendulum. We shall also refer to it as the 
pendulum when there can be no confusion with a single 
pendulum. Equation (1. 1) is the limit of the equations of 
motion of the pendulums as the distances between them 
vanish. <P (x, t) is the angle of rotation of the continuous 
pendulum and x is the dimensionless axial distance. The 
time scale is lD..Jm/ c where m is mass per unit axial 
length D, 1 is the hanging length, c is the torsional 
spring constant, and ,\2 is given by 

,\2 == ImgD2/c, (1. 3) 

where g is the gravitational acceleration. 

We generalize (1. 1) by introducing linear dissipation. 
Thus we consider the damped sine-Gordon equation, 

(1. 4) 

Here r 2: 0 is proportional to the damping constant. 
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Dissipation can occur in the pendulum from friction in 
the rotation axis or from air resistance. In the Joseph­
son junction the diSSipation term corresponds to losses 
due to tunneling of nonsuperconducting electrons. 1 

We shall consider the following stability problems. The 
continuous pendulum is uniformly rotated by an angle of 
1T so that it is balanced in the upward equilibrium posi­
tion, <P (x, t) = 1T. In the first problem, the ends of the 
continuous pendulum are not restrained against rotation. 
A small disturbance is then applied to the pendulum. We 
wish to study the resulting motion. Since a single pen­
dulum with a fixed pivot is unstable in the upward pOSi­
tion, the continuous pendulum with unconstrained ends is 
unstable with respect to any initial disturbance with a 
nonzero mean value. For such a disturbance, the con­
tinuous pendulum would then "fall" from its upward 
position and oscillate about <P = O. However, we shall 
study the response of the continuous pendulum to small 
initial disturbances with zero mean value. 

For the Josephson junction problem, <P = 1T means that 
the phases of the Cooper pairs in the two superconductor 
strips differ by 1T radians. We shall study the transient 
response of the junction in this state to small initial dis­
turbances with zero mean values. 

We define a new dependent variable u(x, t) by, 

<P=1T+U. (1. 5) 

Then, by substituting (1. 5) into (1. 4), we obtain 

(1. 6a) 

The mathematical statement of the stability problem is 
to determine solutions of (1. 6a) in the region 0 :s x :s 1, 
t 2: 0 that satisfy the following boundary and initial con­
ditions: 

for t 2: 0, (1. 6b) 

U(x, 0) = F(x), Ut(x, 0) = G(x), for 0 :s x :s 1. 

(1.6c) 
The boundary conditions (1. 6b) imply, for the pendulum 
problem, that the ends x = 0, 1 are free to rotate. For 
the superconductor problem they imply that the currents 
in the superconductor strips vanish at the ends since 
these currents are proportional to <P x' The functions 
F(x) and G(x) are the specified initial disturbances. The 
conditions that the initial data have zero mean values 
are 

1 1 J F(x)dx = J G(x)dx = O. o 0 
(1. 7) 

In the second problem that we study, we wish to solve 
(1. 6) with the boundary conditions (1. 6b) replaced by 

u(O, t) = u(l, t) = O. (1. 8) 
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The conditions (1. 8) imply that the ends of the pendulum 
are restrained from rotating from their upward position. 
For the superconductor problem (1. 8) implies that the 
voltage across the film vanishes at the ends of the con­
ductor. Since the ends are restrained from rotating, the 
conditions (1. 7) are no longer required. We analyze 
(1. 6) in detail. The corresponding results for the prob­
lem (1. 6a), (1. 6c), (1. 8) are discussed briefly in Secs. 
6e and 7. 

We shall summarize the results of this paper in terms 
of the unrestrained pendulum problem. A brief inter­
pretation of the results in terms of the Josephson tunnel 
junction is given in Sec. 7. We study the solution of (1. 6) 
as A increases from zero. Since A is defined by (1. 3), 
increases in A can be achieved either by increasing the 
mass and/or the axial length of the pendulum and by de­
creasing the spring's stiffness. The upward equilibrium 
position u(x, t) = Uo(x) '= 0 is a static solution for all 
values of A. It is stable with respect to disturbances 
satisfying (1. 7) according to the linear dynamic stability 
theory if ,\ < 1T. It is unstable for A 2> 1T. This means that 
for A < 1T the stiffness of the spring is sufficiently large 
(or the mass is sufficiently small) to prevent the pen­
dulum from moving away from the upward position. A 
small disturbance will cause the pendulum to execute a 
small amplitude oscillation about the upward position. 
If r > 0, the oscillations will eventually de damped and 
the pendulum will remain in the upward position. 

At A = 1T, two other static solutions, ± U1 (x) ~ 0, differing 
only in their sign, branch from Uo• They exist for all 
A 2> 1T. For A near 1T, U1 is approximately proportional to 
COS1TX. Thus when A exceeds the critical value of 1T, the 
mass of the pendulum is sufficiently large and/or the 
spring is sufficiently weak so that the upward state is 
unstable and new, deflected equilibrium positions can 
occur. These deflected states are unstable for arbitrary 
initial disturbances according to the linear dynamic 
stability theory. However, as we show in Sec. 3, if the 
disturbances are suitably restricted they are stable for 
all A > 1T. 

For each A = n1T, n = 2,3, ... , two new static states 
± Un (x) branch from Uo and exist for all A > n1T. Un has 
n internal nodes. It is linearly unstable for n 2> 2 even 
with the restricted data for which U1 is stable. 

In Secs. 4, 5, and 6 we study the transient motion of the 
pendulum when A is increased slightly above 1T and a 
small initial disturbance, with zero mean value, is 
applied to the pendulum in its upward equilibrium state. 
We employ a two-time method to formally obtain an 
asymptotic approximation of the solution of (1. 6) and 
(1. 7) as E ---7 O. Here E is a small parameter that is pro­
portional to the amplitude of the initial data and to the 
magnitude of (A - 1T) 1/2. This method and variations of 
it, have been used previously in other nonlinear stability 
problems; see Refs. 4-6 and references given there. A 
proof of the validity of the asymptotic approximation in 
any finite time interval is given in the Appendix. 

2. THE STATIC STATES 

The static states (equilibrium states) are the time inde­
pendent solutions u(x, t) = U(x) of (1. 6a), (1. 6b). Thus 
U(x) satisfies 

V n + A2 sinV = 0, for 0 < x < 1, 
(2. 1) 

V'(O) = V'(l) = O. 
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A prime denotes differentiation with respect to the 
argument of V. The boundary value problem (2.1) is 
identical with Euler'S elastica theory for the buckling of 
slender, simply supported rods subjected to a compres­
sive end thrust proportional to A 2. Since the solutions of 
(2.1) are well known 7 we shall merely summarize some 
of their properties. 

Property 1: U = Uo '= 0 and U = ± 1T are solutions of 
(2.1) for all A2. If V(x) is a solution of (2. 1) for some 
value of A2, then for the same value of A2, ± U(x) + 2m1T 
are solutions for any integer m. 

Thus, without loss of generality, we can assume that 

Os U(O) '= Q' < 1T. (2.2) 

It follows from (2.1) that if (2.2) is satisfied then for 
each A2, solutions occur in pairs ± U(x). 

We linearize (2. 1) for small U and obtain the eigenvalue 
problem 

V n + A2U = 0, for 0 < x < 1, 

U'(O) = U'(l) = O. 
(2.3) 

It has nonzero solutions if and only if A2 = A~ and V = 
Zn(x). The eigenvalues A~ and the eigenfunctions Zn(x) 
are given by 

n = 1,2, ... , (2.4a) 

where the An are arbitrary constants and the l/In are de­
fined by 

n = 1,2,···. (2.4b) 

Property 2: U'= 0 is the only solution of (2. 1) with 
the restriction (2.2) for 0 < A2 < A~. 

Property 3: A nontrivial solution Vn(x) of (2.1) 
branches from U '= 0 at A2 = A~, n = 1,2, ... , and exists 
for all A2 2> A~. On each branch A and Un are given by 

A = A(n)(k) '= 2nK(k), n = 1,2, ... , (2.5) 

Un(x; k) '= cos-1{1 - 2k2sn2[(l + 2nx)K(k)]} , 

and K and k are defined by8 

k'= Sini, K(k) '= 101f/2(1- k 2 sin2s)-1/2ds. (2.6) 

Here K(k) is the complete elliptic integral of the first 
kind. It is a monotonically increaSing function of the 
modulus, k. The linear eigenvalue problem (2.3) yields 
the bifurcation points of the solutions of the nonlinear 
problem (2.1) since K(O) = 1T/2, A(n)(O) = 2nK(O) = An' 
and U (x; 0) = O. We refer to the solutions (2. 5) as the 
defle~ted static states. We need not consider the eigen­
value Ao = 0 of (2.3) since there is no solution of (2. 1) 
with A2 > 0 that branches from Ao = O. 

Property 4: Vn(x; k) has exactly n internal nodes. 

Thus for any A2 in (A~, A~+l)' there are exactly (2n + 2) 
static states. They are the upward position Vo 0= 0, the 
downward position Vo '= 1T and the 2n deflected static 
states that correspond to the branches emanating from 
'\~,A~ ... ,A~; see Fig. 1. 
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We interpret these properties for the pendulum problem. 
Property 1 asserts that the vertical positions, upward or 
downward, are possible static states for all ,\2. Addi­
tional static states can be obtained by rotating the pen­
dulum from a given static state by any multiple of 21T. 
Property 2 implies that there are no deflected static 
states for sufficiently small lmD2/ c. For a fixed length 
D this implies that the spring is too stiff compared to 
the mass and hence the pendulum is restrained from de­
flecting from the upward position. Or equivalently, for 
fixed m / c this implies that the pendulum is sufficiently 
short so that it is too stiff to deflect. As,\2 increases, 
the ability of the springs to restrain deflections is di­
minished. Thus, at the critical value of ,\2 == ,\~, two new 
equilibrium states, ± U1 (x), occur. 

According to Property 4, these states have exactly one 
internal node. As,\2 increases further, these are the 
only deflected equilibrium states until,\2 = A~. Then 
two more equilibrium states, ± U2 (x), can occur. They 
have exactly two internal nodes. They could conceivably 
be attained by restraining the pendulums in the upward 
pOSition until ,\2 == ,\~. Additional static states exist as 
,\2 increases as asserted by Property 3. 

3. THE LINEAR DYNAMIC STABILITY THEORY 

We shall use the linear dynamic theory to test the 
stability of the static state Un(x) for a fixed value of '\. 
Thus we consider one parameter families of initial data, 
F(x; 1]) and G(x; 1]), and solutions u(x, t; 1]) of (1. 6) such 
that 

u(x, t; 0) = Un(x), 

F(x; 0) = Un(x), G(x; 0) = O. 
(3. 1) 

The linear stability theory for V(x, t) == ilu(x, t; O)/a1] is 
the variational problem of (1. 6) with respect to 1]. It is 
given by 

V;t - Vxx + rv; - A(,,) (cosUn)V = 0, 

Vx(O, t) = If,,(I, t) = 0, 

V(x,O) == Fl)(x; 0) == FO(x), 

V;(x, 0) = Gl)(x; 0) == GO(x). 

(3.2) 

We first test the stability of the upward equilibrium 
position, U == Uo == 0, with respect to initial disturbances 
FO and GO that satisfy (1. 7). We assume that FO and GO 
have the convergent Fourier expansions, 

00 00 

FO(x) == '£Fk0lj;k(X), GO(x) == '£ G~lj;k(X). (3.3) 
k= 1 k=l 

The solution of (3.2) with Un == 0 and '\fo) == ,\2 is 
00 

V(x, t) = '£ Sk(t)lh(x), (3.4) 
k= 1 

where Sk(t) are the solutions of 

S~ + rs~ + (A~ - A2)Sk == 0, 

Sk(O) = FkO, S;(O) == G~, 
(3.5) 

for k = 1,2, .... Primes denote differentiation with 
respect to t. An analysis of the solutions of (3. 5) shows 
that the upward state is stable if 

,\ < ,\ l' for r == 0, 

'\:S:'\l' for r>o. (3.6) 
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FIG. 1. A sketch of the re­
sponse curves A = A(n)(k) 

kol ________________________________ for the first four nonlinear 
static states. The curves 
are shown only for k '" ° 
since they are symmetric 
with respect to k = O. The 
curves branch from k = 0 
at the eigenvalues An of the 
linearized static theory 
(2.4a) Thus An(O) = An and 
limA(n)(k) = 00 as k --7 1. 
The downward equilibrium 
state U = 11 corresponds to 
the line k = 1; see (2.6). 

It is unstable for all other values of ,\ =:: O. If the initial 
data (3.3) do not satisfy (1. 7), then they contain the 
Fourier components FIJ and/or G8. The upward state is 
then unstable for all values of ,\ =:: O. A similar analYSis 
shows that the downward state U = 1T is stable for all 
values of ,\ 2. 

We now test the stability of the deflected static states, 
U == Un' n = 1,2, .... The solution V(x, t; n, k) of (3.2) is 
then 

00 

V= '£ raj exp(ip/t) + aj exp(ip;t)]<pj(X)' (3.7) 
)=0 

where <Pj' j = 0, 1, ... , are the eigenfUnctions of 

<Pj(O) == <p;(I) == O. (3.8b) 

Primes on <Pj denote differentiation with respect to X. 

The eigenvalues /Jj (n, k) and the eigenfunctions <Pj (x; n, k) 
depend on the branch number n and the pOSition on the 
branch characterized by the parameter k; see (2. 5) and 
(2.6). In general, they are not known explicitly. The 
exponents in (3.7) are the two roots of 

Pi - irpj = /Jj' j == 0, 1, .... 

Thus the p.± are also functions of n and k. The co­
efficients in (3.7) are defined by 

(3.9) 

aj-(n, k) == (P/Fjo + i40 )/(PI - Pi), 
(3.10) 

a/(n, k) == - (Pj - Fjo + iCP)/(P/ - Pj), j == 0, 1, ... , 

where f;0(n, k) and CjO(n, k) are Fourier coefficients that 
are defmed by 

00 

GO(x) == ,£C.0<p.(x). 
j=O J J 

(3.11) 

The expansions (3.7) and (3. 11) are valid for sufficiently 
smooth FO and GO since for each n, (3. 8) is a Sturm­
Liouville problem. Consequently, there exists an infinite 
sequence /Jo, 1-11' ••• of eigenvalues and corresponding 
eigenfunctions <Po' <Pl' •.. such that limj~oo /Jj = cc. The 
eigenfunctions form a complete set. Furthermore,9 <Pj 
has precisely j zeros on (0, 1),j == 0,1, .... 

The stability results that we shall establish are sum­
marized in 

Theorem 3. 1: A static state Un(Xj k), n = 1,2, ... , is 
linearly dynamically stable for ,\2 = A("ik) if and only if 

a;(n, k) == 0, j == 0, 1, ... , n - 1. (3.12) 
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The proof of Theorem 3.1 follows from Lemmas 3.1, 
3.2, and 3.3 which we now establish. 

Lemma 3.1: The nth eigenvalue Iln(n,k) for the nth 
static branch and the corresponding eigenfunction 
¢n(x; n, k) of (3.8) are10 

Iln(n,k) == \~lk)k2, ¢,,(x; n,k) == sn(z), 

z == (1 + 2nx)K(k), n == 1,2, . ". 
(3.13) 

Proof: It is easy to show by direct substitution into 
(3.8) that Il n and ¢n' given by (3.13), are respectively an 
eigenvalue and the corresponding eigenfunction. Solu­
tions in terms of Jacobian elliptic functions are to be 
expected since (3. 8a) is essentially a Lame equation. 
Since sn(z) has n zeros on (0,1), Il n given in (3.13) 
must be the nth eigenvalue. 

Lemma 3.2: The eigenvalues of (3.8) do not vanish 
for any k in (0, 1). 

Proof: To prove the lemma, we show by contradiction 
that J.l = ° is not an eigenvalue of (3. 8) for any kin (0,1) 
and for any n = 1,2, .. '. Thus we assume that there is 
an integer n and a value of k in (0, 1) such that J.l = ° is 
an eigenvalue of (3.8). Then (3.8) is reduced to 

¢'(O) = ¢'(1) == 0. 

We observe that 

¢ == Y1(x) == cn(z). 

(3. 14a) 

(3. 14b) 

(3.15) 

is a solution of (3. 14a), where z is defined in (3. 13). We 
obtain a second linearly independent solution Y2(x) 
corresponding to Y1 by standard methods. We substitute 
the general solution formed from Y1 and Y2 into (3. 14b). 
Then we conclude that if (3. 14) has an eigenfunction 
corresponding to Il == 0, k must satisfy 

(3.16) 

Since the left side of (3. 16) is negative for any k in 
(0,1), the contradiction is established and the lemma is 
proved. 

Lemma 3.3: For n == 1,2,'" and all kin [0, 1) we 
have 

for j = 0, 1, ... , n - 1, 

Il j (n, k) ~ 0, 

1 

< 0, 

for j = n (the equality holds only for 
k == 0), 

> 0, for j == n + 1,···. (3. 17) 

Proof: We recall from (2.5) and (2.6) that A~nlO) = 
(mT)2 and cosUn(x; 0) = 1. Then we can solve (3.8) for 
k == 0. We obtain 

Ili n, 0) == (j2 - n2 )7T 2 , 

¢j(x;n, 0) ==Ajl/!j(x), 

(3.18) 

(3.19) 

where A i are arbitrary constants. Since (3. 18) satisfies 
(3. 17) with k == ° and the eigenvalues depend continuously 
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on k, the proof is completed by reference to Lemmas 3.1 
and 3.2. 

Proof of Theorem 3.1: The roots of (3.9) are 

iN == - ir 'f i(r2 - 4J.l)1/2, j == 1,2,···. (3.20) 

If r 2 - 4J.l. :$ 0, then exp(iP/t) decays to zero as t ~ ex) 

when r> O. It is OSCillatory and hence bounded as t ~ ex) 

if r == 0. If r 2 - 41l. > 0, then exp(ip/t) approaches zero 
as t ~ ex) if J.lj > 0. if Ilj > 0, then exp( ip;t) grows since 
iP; > ° and exp(ip/l) decays. The theorem fOllows from 
Lemma 3.3 since by linear dynamic stability of the 
static states we mean that V is bounded as t ~ ex) for 
arbitrary initial data possessing the expansions (3.11). 

All the static states Un' n == 1,2,"', are therefore 
dynamically unstable for arbitrary disturbances. How­
ever, as we see from Theorem 3. 1, they are stable for 
suitably restricted disturbances. In particular, if we 
assume that 

j~(I, k) == 88(1, k) == 0, for 0:$ k:$ 1, (3.21) 

and the data (3.11) is otherwise arbitrary, then (3.10) 
and Theorem 3.1 imply that U1 is dynamically stable and 
Un' n ~ 2, are dynamically unstable for all k in (0,1). It 
is easy to verify that 

¢O(X; n, k) == dn(z), J.lo(n, k) == 4n2(k 2 - I)K2(k), (3.22) 

are the principal eigenfunction and eigenvalue of (3.8). 
Thus (3.21) are equivalent to 

1 1 
1, FOdn(z)dx == 1, GOdn(z)dx == O. (3.23) 
o 0 

4. THE TRANSIENT MOTION 

We shall now study the transient motion that results 
when a small disturbance satisfying (1. 7) is applied to 
the unstable static state Uo == 0 for A slightly greater 
than A1 == 7T. Thus we consider (1. 6) with the data 

F(x) == Ef(x), G(x) == Eg(X). 

(4. la) 

(4.1b) 

The small parameter E > ° is defined either by (4. la) 
or (4. Ib). By comparing (4. la) and (2.5) with n == 1, we 
conclude the E == O(k). We assume that the damping is 
small, Le., that 

r = Ey, (4.2) 

where y is independent of E. Furthermore, we assume 
that the initial data, which satisfies (1. 7), has the Fourier 
expansion 11 

00 00 

f(x) == '£ fm l/!m (x), g(x) == '£ gm l/!m(x). (4.3) 
m~1 m=1 

We refer to the initial, boundary value problem (1. 6) 
with the data (4. 1), (4. 2), and (4.3) as Problem N. 

We shall obtain a formal asymptotic expansion of the 
solution of Problem N as E ~ 0 by a two-time method. 
The method was applied to a related stability problem in 
Ref. 5. Thus we assume that the solution of Problem N 
depends on two time scales: The fast time t and the slow 
time e which is defined by 

e = Et. (4.4) 
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We seek an asymptotic expansion of the solution in the 
form 

0() 

u(x,t;e)= e~uj(x,t,8)Ei. (4.5) 
j~O 

We assume that the expansion coefficients ui(x, t, 8), 
j = 0,1, .. " are bounded functions of x, t and 8 for x in 
[0, 1] and t and 8 in [0, 00 ). To determine them, we sub­
stitute (4. 1)-(4. 5) into Problem N. We assume that 
(4.5) can be differentiated term by term. Then by 
equating coefficients of the same powers of e we find 
that for j = 0, 1, ... the ui satisfy 

u{t - u{x - I\.~uj = r i , 

u j
x (0,t,8)=u{(1,t,8) = 0, (4.6) 

uj(x, 0, 0) = 0jol(x), u1 (x, 0,0) = Oj~(x) - u~-l(x, 0, 0). 

Here 0'0 is the Kronecker delta and u- 1 = u-2 == 0. The 
inhom6geneous terms ri are functions of un, u 1, ••• , u j - 1 

and their derivatives. 

The u j are successively determined by solving the 
linear, initial, boundary value problems (4.6) for j = 0, 
1, .. '. Since the ui are required to be bounded functions 
of t and 8, resonance producing terms must be elimin­
ated at each step from the r j. The analysis is similar to 
Ref. 5, although slightly more complicated. We shall 
omit the details of the calculations and present the re­
sults. We find that uO is given by 

UO(x,t, 8) = b(8)1/I1(X) + e-ye/2 

x ~ (1m coswmt + gm sinwmt) 1/Im(x). (4.7) 
m=2~ Wm 

Here 1/Im is defined in (2. 4b) and b(8) is the solution of 
the initial value problem: 

b(O) = 11, be (0) = 0. 

a( 8) and c are defined by 

a(8) == :2 {- 1 + 3e-ye E2 ~2 + (~nrJ}, 
1 . n 

(4.8) 

1\.2 
c==~. 

8 
(4.9) 

We refer to (4.8) as the slowly varying amplitude prob­
lem. In obtaining (4.7), we required that the initial data 
satisfy the condition 

(4. 10) 

A similar restriction occurred in Ref. 5. If the initial 
data violates (4. 16), then a different asymptotic expan­
sion of the solution is required. We assume that the 
Fourier coefficients 1m and gm decay sufficiently rapidly 
so that the series in (4.7) converges and represents 
the solution of (4.6) with j = 0. 

In the Appendix we establish the validity of the asymp­
totic approximation uO• Specifically we prove the follow­
ing theorems. 

Theorem 4.1: If u(x, t; e) is a solution of Problem N, 
then 

max lu(x, t; e) I = 0(40) as e --? 0. 
<X.t)EDT 

Theorem 4.2: If u O is the approximation given by 
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(4.7), then u = euo + eR, where R = O(e) as e --? ° uni­
formly in DT for any T < 00. 

In Theorems 4. 1 and 4. 2, the region DT is defined for 
any positive T < 00 by 

DT == {x, t I ° ::s x ::s 1, O::s t ::s T} (4. 11) 

5. THE SLOWLY VARYING AMPLITUDE PROBLEM 

We shall now summarize the qualitative behavior of the 
solution of the slowly varying amplitude problem (4. 8) 
(cf. Ref. 5). 

First, we consider (4.8) with y = 0, Le., we consider 
Problem N with no damping. Then (4.8) is an autono­
mous differential equation since a, which is defined by 
(4.9), is a constant. The qualitative features of the solu­
tion are easily obtained from a phase plane analysis. 
The number of Singular points of (4.8) depends upon the 
sign of a. If a 2: 0, then the origin, b = be = 0, of the 
phase plane is the unique Singular point. It is a center. 
The trajectories in the phase plane are then closed 
curves (see Fig. 2), and hence b(8) is periodic. The 
period depends on the magnitude of the initial data 1 l' 
If a < 0, then there are three Singular points, 

b = be = 0, (5.1) 

(5.2) 

The singular point (5. 1) is a saddle and the singular 
pOints (5.2) are centers. The origin corresponds to the 
upward equilibrium state and the points (5.2) corres­
pond to the two deflected equilibrium states that branch 
from I\. = 1\.1 (see Fig. 1). The trajectories of (4.8) with 
a < ° are closed curves (see Fig.3). Thus, b(8) is a 
periodic function. There are two types of periodic 
motion depending on the magnitude of 11, If 111 I < It, 
where It is defined by 

(5.3) 

FIG.2. Phase plane dia­
gram for the slowly 
varying amplitude prob­
lem (4.8) with (J 2: D. 
The origin is the unique 

------4~!§1~---____l~ singular point. It is a 
b center. The trajectories 

I, 

in the phase plane are 
closed curves. They 
represent periodic solu­
tions on the slow time 
scale e = €t. 

FIG. 3. Phase plane diagram for (4.8) with 0< D. 
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FIG.4. Phase plane diagram for (4.8) with the monochromatic data (5.4) and for a representative value of y. The graph was obtained by 
Dr. Louis Bauer by solving (4. 8) numerically. 

then b( e) is a periodic motion about one of the singular 
points (5.2). We refer to this periodic motion as a 
polarized mode of vibration. The motion is about the 
positive (negative) singular point if f1 > 0 « 0). If Ifll 
ft , the initial point lies on the separatrix curve. The 
solution lhen approaches the origin as e --) 'Xl. If I fll > 
f~ , the resulting periodic motion is referred to as the 
swaying mode of vibration. Then b( e) oscillates between 
neighborhoods of the two singular points (5.2); see Fig. 
3. 

We now consider (4.8) with y > 0 and the monochromatic 
initial data: 

f 1 '" 0, In = gn = 0, n = 2,3,···. (5.4) 
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Then from (4.9) a and ea are given by 

a = - 2/AI < 0, ea=-l/4. (5.5) 

Since a < O,(4.8),which is an autonomous equation, has 
the three singular points (5.1) and (5.2). The origin is 
a saddle and (5.2) are stable spirals (stable nodes) if 
y2 + 8ea = y2 - 21T4 < ° (> 0). A sketch of the solutions 
of (4.8) that pass through the origin of the phase plane, 
Le., the separatrices, is given in Fig. 4 for y2 < 21T4. 

The points b = ± p, be = 0 (see Fig. 4), are critical 
values offl in the following sense. If If11 < p, then b(e) 
will execute a damped, polarized oscillation about one of 
the singular paints (5. 2) and approach the singular point 
as e --> 0. The choice of the singular point depends on 
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the sign off1;see Fig. 4. If If11 ?pandflliesona 
separatrix, then the solution will approach the origin as 
e, 00. It will oscillate several times in the swaying 
mode before monotonically approaching the origin. The 
number of oscillations depends on the size of 11 , If 
If 1 I 2: P and f 1 is not on a separatrix, then b( e) will 
execute a finite number of swaying oscillations before it 
is "captured" by one of the Singularities (5.2). It will be 
captured as a damped oscillation approaching the sin­
gular point as e -) 00. The Singular point that b(e) 
approaches depends on the value off1• Iff1 is in a 
shaded (un shaded) region in Fig. 4, then the final state 
will be at- Bo(+ Bo)' Thus b(oo) need not be "near" 
b(O). 

For y > 0 and initial data violating (5.4), a'" const, and, 
consequently, (4. 8) is a nonautonomous equation. Thus it 
is not possible to use a phase plane analysis. However, 
we observe from (4.9) that limo~ooa(e) = -- 2/A 2 and the 
limit is approached exponentially. Thus it is li~ely that 
for sufficiently large e the qualitative behavior of the 
solution with initial dlta violating (5.4) is similar to the 
behavior of the solution with data satisfying (5.4). A 
limited numerical study of (4.8) suggests that this true 
for all e. 

6. QUALITATIVE FEATURES OF THE 
APPROXIMATION 

We shall discuss some of the qualitative features of the 
approximation (4. 7) and interpret them in terms of the 
pendulum problem. A brief interpretation for the super­
conductor problem is given in Sec. 7. We introduce the 
following terminology to simplify the discussion; cf. Ref. 
5. The leading term f1 COS7TX (g 1 = 0) in the initial data 
(4.3) is called the primary data. The remaining sums 
in (4.3) are called the secondary data. The leading term 
in the approximation (4.7), b(e) COS7TX, is called the pri­
mary motion and the sum in (4. 7) is called the secondary 
motion. 

The primary motion is independent of t. The slow time 
enters in the secondary motion only as a slow time de­
cay. The secondary motion is independent of e if y = O. 
It is essentially a high frequency motion. By using 
obvious trigonometric identities, we can express the sum 
in the secondary motion as the sum of periodic pro­
gressing waves traveling in the positive and negative x 
directions with phase functions 

(6.1) 

Thus the secondary motion, is within the factor e- yfJ /2 , an 
almost periodic function of two variables. We observe 
that the secondary motion depends only on the secondary 
initial data. 12 The primary motion depends on the pri­
mary data through the initial conditions (4.8) and on the 
secondary data through the factor a; see (4.9). 

If the amplitude of the secondary motion is" small" 
compared to the primary motion, then the pendulum 
motion as approximated by W O is a small amplitude, 
high frequency oscillation (the secondary motion), super­
posed on the predominant slow time periodic primary 
motion. If, in addition, a < 0, the slow time motion will 
be either polarized about one of the deflected static 
states or it will be in the swaying mode, depending on 
the magnitude of f 1 ; see Figs. 3 and 4. However, if a> 0, 
then the primary motion will be periodic about the up­
ward static state. The secondary motion will appear as 

J. Math. Phys., Vol. 14, No.2, February 1973 

a quivering of the pendulum as it executes its primary 
periodic motion. Of course, if the amplitude of the 
secondary motion is sufficiently large, then the high­
frequency secondary motion is the main motion. The 
effect of the primary motion may appear as a slowly 
varying drift of the pendulum as it oscillates on the fast 
time scale. 

Theorems 4. 1 and 4.2 insure that for any finite time, 
the solution of Problem N is approximated by EUO. That 
is, for sufficiently small E, the pendulum oscillates as 
described either about ± U1 or about the upward vertical 
position. However the downward equilibrium pOSition 
U = ± 7T is stable for all A 2. Thus it is conceivable that 
as t ~ 00 the equilibrium state U1 ' which is unstable for 
arbitrary disturbances (see Sec. 3), will repulse the 
transient motion. Then the pendulum will eventually 
"fall" and oscillate about U = 7T. However, if Theorems 
4. 1 and 4.2 were true on D 00' then it would be impos­
sible for the pendulum to fall to U = 17. 

There is further heuristic evidence to indicate that the 
pendulum does not fall as t ~ 00. First, if y > 0, the 
secondary motion will eventually be damped. In fact, we 
have from (4.9), (4.7), and (5.2) that 

limuO(x, t, Et) = ± (,[2/A 1) COS7TX. (6.2) 
t~oo 

The sign in (6.2) is determined by the value of 11 ; see 
Fig. 4 and the discussion in Sec. 5. The right side of 
(6.2) is precisely the coefficient of E in the power series 
expansion of ± U1(x; k(E)), as is easily demonstrated 
from (2.5). This suggests that within terms of O(E2), the 
solution of Problem N approaches the deflected static 
state branching from A 1 as t ~ 00. 

Finally, it is not difficult to show that if the initial data 
(1. 6c) are odd functions about x = 1/2, then the solution 
of (1. 6) is also an odd function. For sufficiently large t, 
the solution U will provide a "disturbance" to the static 
states ± U1 • Specifically at t = to this disturbance is 

(6.3) 

Since U1 and u are odd about x = 1/2, FO and CO satisfy 
(3.23). Consequently ± U1 are stable with respect to the 
disturbances (6.3). Thus if the transient motion for A > 
A 1 is started with odd initial data, the resulting motion 
will not be repelled by ± U1 • 

A. Periodic solutions 
To further interpret the secondary motion, we shall now 
obtain, for y = 0, periodic solutions of (1. 6a), (1. 6b) near 
U = U1(x) by the Poincare-Linstedt method. This method 
was developed for ordinary differential equations. An 
extension of this method to partial differential equations 
and numerous applications are given in Ref. 13. 
Thus we seek formal periodic solutions of circular fre­
quency fl near the static solution U1 (x) in the form, 

00 

u(x, t, 0) = U1(x) + 0:6 wj(x, nt)oj, 
j~O 

where 0 2: 0 is a small parameter. 

00 

fl= :6fljoj, (6.4) 
j~O 

A sequence of linear problems to determine the expan­
sion coefficients is obtained by sutstituting (6.4) into 
(1. 6a), (1. 6b) and equating to zero the coefficients of 
each power of 0. An analysis of the first of these prob­
lems using Lemma 3.3 shows that for s = 1,2, .•. 

w O = wso == [Bs sin(.JMs + ···)t + Cs cos(f/;,s + ... )t]¢s(x) 
(6.5) 
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are the leading terms in the expansion (6.4) of periodic 
solutions of (1. 6a), (1. 6b). Here Bs and Cs are arbitrary 
constants, I1s are the positive eigenvalues of (3.8), and 
CPs are the corresponding eigenfunctions. Successive 
coefficients can be evaluated by studying the remaining 
linear problems. We shall not determine them since the 
approximations (6.5) suffice for our purposes. 

We now approximate wso given by (6.5) for Acu(k) near 
AI' Let E be defined as in (4.1). Then this is equivalent 
to approximating the eigenvalues and eigenfunctions of 
(3.8) for small E by power series in E. The leading 
terms in these power series are given by (3.18). We 
insert (3. 18) into (6.5). Then by appropriately choosing 
the arbitrary constants Bs and Cs in (6.5), we observe 
that ws

o, s = 2,3, ... , are the components of the secon­
dary motion in (4.7) with y = O. 

B. Periodic spatial waves on the infinite interval 

The asymptotic expansion (4.5) of the solution of Prob­
lem N also yields asymptotic expansions of solutions of 
the sine-Gordon equation which are periodic on I x I < 00 
for;\.2 = AI + E2. To show this, we extend the initial 
data, F(x) and G(x), and the solution of Problem N as 
even functions for x < 0 and x > 1. Then the extended 
function is a solution of (1. 6a) that is periodic in x of 
period 2 and satisfies the initial conditions (1. 6c). The 
initial data is also of period 2. Thus (4.7) is an asymp­
totic approximation of the solution of (1. 6a) as E -7 0 for 
periodic initial data of period 2 on the infinite line and 
subject to the conditions (4.1), (4. 2), and (4.3). 

If we consider initial data which are even on [0, 1] with 
respect to x = 1/2, then it is not difficult to show that the 
resulting solution of (1. 6a) is also spatially periodic of 
period 1. The proof requires some of the estimates 
derived in the Appendix. It is elementary and will not be 
given. Consequently, asymptotic expansions of spatially 
periodic solutions of period 1 can be obtained from 
(4.5) by specializing Problem N to initial data even 
about x = 1;2 and by extending the data and the solution 
as even functions for x < 0 and x > 1. 

C. Generalizations 

(1) Problem (1. 6) with the boundary conditions (1. 6b) 
replaced by (1. 8) can be analyzed in the same way as 
(1. 6). There are deflected static states branching from 
each eigenvalue of the linearized static theory. The 
downward position U = ± 7T is not a possible equilibrium 
state with boundary conditions (1. 8). If we define II by 

II == U'(O), (6.6) 

then the branches A = A(n)(II), n = 1,2,"', are obtained 
by solving the implicit relationships, 

A = 2nK(II/2;\.). (6.7) 

The solutions on the branches are given by 

U (x; II) = 2 sin- 1[(1I/2A) sn(Ax; 1I/2A)]. (6.8) 

We can show that A (n)(O) = n7T, A(n)(II) is a monotonic in­
creasing function and for n = 1,2, ... 

A(n)(II) > 11/2, for 0 :'.S II < 00, 

A(n)(II) -7 11/2 as 11-7 00. 
(6.9) 
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The states ± U1(x) are stable according to the linear 
dynamic stability theory without restrictions on the 
initial data. This is intuitively clear since the boundary 
conditions (1. 8) imply that the ends of the pendulum are 
fixed in the upward vertical pOSition. All other deflected 
static states are unstable. If the transient motion 
approaches a steady state as f -7 00, then this steady 
state must be ± U1(x). The two-time method can be used 
to study the transient motion for ;\.2 slightly greater than 
the lowest eigenvalue. Results similar to those present­
ed in Secs. 4-6 can be obtained. 

(2) The formal transient analysis of Sec. 4 can be 
extended to initial boundary value problems for more 
general wave equations where sin u in (1. 6a) is re­
placed by an arbitrary function H(u). In particular, if 
H(u) satisfies the conditions 

H(O) = H"(O) = 0, H'(O) = 1, H"'(O) = - Ho < 0, 

(6.10) 
then it follows directly from the calculations in Sec. 4 
that the leading term in the asymptotic expansion of the 
solution is given by (4.7) and (4.8), where a is defined 
now by 

(6.11) 

If, in addition to (6.10), there exist constants Kl'K2 
such that H(u) satisfies the following conditions: 

IH'(u) - 11 :'.S K2 lu I, (6.12) 

then the proof in the Appendix of the validity of the 
asymptotic approximation is directly applicable. If H(u) 
violates (6.10) and (6. 12), then a similar analysis may 
still be possible but it cannot be obtained trivially from 
the present results. A new computation may be re­
quired. 

7. THE JOSEPHSON JUNCTION 

We shall now briefly describe the results in terms of 
the Josephson tunnel junction. The tunneling current per 
unit length jT (x, f), is given by 

jT = - J sinu. (7.1) 

The constant J depends on the dielectric film thickness 
and the temperature. It increases rapidly as the thick­
ness of the film decreases and it increases as the temp­
erature decreases.3 Since A2 is given by (1. 2), increas­
ing values of A can be achieved by, imagining a sequence 
of junctions with decreasing film thickness, 14 or by 
lowering the temperature of the junction, or by increas­
ing the length of the junction. 

The voltage across the film at point x and time t is pro­
portional to u t(x, t) and the current in the superconductor 
strips is proportional to u x(x, t); see Ref. 1. The static 
solutions U(x) are therefore equivalent to states with 
zero voltage. We refer to them as dc states. Time de­
pendent states are called ac states. We shall refer to 
the conditions (1. 6b) and (1. 8) as the current and the 
voltage boundary conditions, respectively. 

We denote the total tunneling current corresponding to the 
solution u(x, f) by I.,(f). It is given by 

1 
I" = - JD fo sinu(x, t)dx. (7.2) 
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By integrating (1. 6a) and using (7.2), we obtain 

Iu = ~~ (- fol(U tt + rut)dx + ux(l, t) - ux(O, t)). 
Thus corresponding to a static state V(x) we have 

Iv = (JD/,\2)[V'(I) - V'(O)]. 

(7.3) 

(7.4) 

If V(x) satisfies the current boundary conditions, then 
I v = O. This implies that all dc states satisfying (1. 6b) 
have zero total tunneling current. The pointwise tunnel­
ing current j T(X) does not vanish, in general. If the dc 
state V satisfies the voltage boundary conditions, then 
Iv vanishes if and only if V'(l) = V'(O). We cO:lClude 
from (6.8) that Vt corresponding to the voltage boun­
dary conditions is symmetric about x = 1;2. Conse­
quently, V'(l) = - V'(O) = - v, and we have from (7.4) 

Iu = - (2JD/,\2)v. 
1 

(7.5) 

We employ (6.9) in (7.5) and obtain 

IIv I < I; == 4JD/'\ = 2[(2h/e)(J/l))1/2, 
1 1 

(7.6) 

where we have used (1. 2). Furthermore, we conclude 
from (6.9) that limv~oc,Ivl = 1;1 is independent of D. 
Thus, if ,\ is increased by increaSing D and J is held 
fixed, then I; is the maximum total current that the dc 

1 
state Vt can support. 

The dc state V == Vo == 0 is a zero-tunneling-current 
state since sinUo == O. It is unstable for ,\ > '\t. New dc 
states Un(x) appear in pairs at ,\ = '\n' n = 1,2, ..•. In 
Secs. 4-6 we studied the electronic switching (ac states) 
that occurs when the junction is disturbed from Vo for ,\ 
slightly greater than ,\ 1. If y > 0, then the ac effect is 
eventually dissipated and the junction reaches l5 one of 
the dc states ± Vl . If Y == 0, then the ac effect persists, 
as described in Secs. 5 and 6. According to the approxi­
mation (4. 7), the pointwise voltages and tunneling 
currents in the ac states do not vanish. If u satisfies the 
current boundary conditions, then we obtain from (4. 5), 
(4.7), and (7.3) that Iu(t) = O(E2). If U satisfies (1. 8), 
then, in general, Iu(t) = O(E). 

The discussion in this section implies that the voltage 
boundary conditions are more significant if the Joseph­
son junction is to be used in an electronic switching 
device. 
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APPENDIX: PROOFS OF THEOREMS 4.1 AND 4.2 

Problem N is to determine a solution u(x, t; E) in DT of 
(1.6) with the data (4.1)-(4.3). We assume that there is 
class of suffiCiently smooth initial data such that: Prob­
lem N has a unique solution u(x, t, E) in DT for every T < 
CIJ and all sufficiently small E > 0; Uxx t and u ttt exist and 
are continuous in DT ; and finally ugee' Uget' and U9tt exist 
and are continuous in DT, where U O is the solution of 
(4.6) with j = O. The latter condition will be satisfied if 
the Fourier coefficients fm and gm in the series in (4.7) 
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decay sufficiently rapidly. The proof of Theorem 4. I 
will follow directly from Sobolev's lemma 16 and 
Lemmas A2 and A3. First we state and prove the 
lemmas. 

We use the following notation for any L2 function v(x, t) 
in DT : 

1 
IIvl1 2 == 1 V2(x, t)dx, o 

t 
Ilvllr == J Ilvl1 2dt. o 

(AI) 

We shall frequently employ the elementary inequality 

2vw::s v2 + w 2 (A2) 

for any two L2 functions v(x, t) and w(x, t). 

Lemma Al: For all t in [0, T], the solution u of Prob­
lem N satisfies 

(A3) 

Proof: The proof follows by squaring the equality 
t 

u(x, t) = u(x, 0) + fo us(x, s)ds (A4) 

and then using Schwarz'S inequality and the initial con­
ditions (1. 6c), (4. Ib). 

Lemma A2: Ilullt> Ilu)lt, and Ilu t lit are O(E) uniformly 
in DT • 

Proof: We multiply (1. 6a) by ut , integrate with re­
spect to x by parts, and use the boundary conditions 
(1. 6b). This gives 

dW = 2,\2 J 1 (sinu)utdx - 2Eyllutl12 ::s ,\2 (11sinu11 2 + Ilutl12) 
dt 0 

::s ,\2(lluI1 2 + Ilu t I1 2), (A5) 

where W(t) is defined by 

(A6) 

We integrate (A5) and obtain 

(A7) 

Lemma Al applied to (A7) gives 

W(t)::s ,\2t(2E21IfI12 + tllutm + ,\21lutllr + W(O) 
t 

::s (E22,\2Tllf 112 + W(O)) + ,\2(1 + T2)fo Wdt. (AS) 

Since W(O) == O(E2) as determined by the initial data 
(4. Ib), we conclude from Gronwall's inequality applied 
to (A8) that 

W(t) = O(E2), 

uniformly in DT • Since, from (A6), W(t) ~ II u"l12 and 
W(t) ~ II uT II, the proof follows from (A9) and the de­
finitions in (AI). 

LemmaA3: Iluxxllt> Ilu tt Ilt,and liuxtll t are O(E) 
uniformly in DT • 

(A9) 

Proof: Since uxxt and U ltt exist, we can differentiate 
( 1. 6) with respect to t and obtain an initial-boundary 
value problem similar to (1. 6) for w = Ut. The co­
efficients in the resulting differential equation involve u. 



                                                                                                                                    

276 A. J. Callegari and E. L. Reiss: Nonlinear stability problems for the sine-Gordon equation 276 

We establish the required estimates of Utt = wt and u tx = 
W x by applying the same techniques used in the proof of 
Lemma 2 to the new initial-boundary value problem. 
Therefore, we shall omit the details of the proof. The 
estimate on uxx is then obtained from (1. 6a). 

Pyoof of 1 heorem 4. 1: Lemmas A2 and A3 give L2 
estimates in DT of u and all its first and second deriva­
tives. Sobolev's lemma16 then establishes the maximum 
norm estimate of the theorem. 

Pyoof of Theorem 4.2: The proof of this theorem is 
similar to the proof of Theorem 4.1. We obtain L2 
estimates of 

ER == u - EU O (AIO) 

and its first and second derivatives in DT and then we 
use Sobolev's lemma to show that R = O( E) uniformly in 
DT • For simplicity, we give the proof for y = O. It is 
also true for y > O. We insert (A10) into (1. 6). Then R 
satisfies 

Rx(O, t) = Rx(l, t) = 0, 

R(x,O) = 0, Rt(x, 0) = - EU~(X, 0, 0). 

The inhomogeneous term in (A11a) is defined by 

E(x, t) == (.\2/E) (sinu - u) + E2(uO - u~e)' 

(A11a) 

(Allb) 

(Allc) 

(A11d) 

In deriving (All) we have used (4. la), (4. 6) withj = 0 
and the fact that, for y = 0, u?e = O. The L2 estimates of 
R are obtained by multiplying (Alla) by Rt , integrating 
with respect to x and using (Allb). Then, integrating the 
result with respect to t and using (A2), we get 

N(t) == IIRtl12 + IIR)12 ~ IIEllr + IIRtllr + .\211R112 + N(O). 
(A12) 

Since R(x, 0) = 0 it is easy to show (see Lemma A1) that 

(A13) 

Then from (A12) and (A13) we obtain 
t 

N(t) ~ IIEllr + N(O) + (1 + .\2T)i, N(s)ds. 

° 
(A14) 

In order to apply Gronwall's inequality to (A14) we first 
estimate II E II t • 

Since u = O(E) in D T , sinu - U = O(u3 ) = O(E3) in DT and 

(A15) 
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Furthermore, we observe from (4.7) and (4.8) that uO 

and U~8 are uniformly bounded in DT • Thus (Alld) and 
(A15) imply that 

uniformly in Dp. (A16) 

Then (AI6) and Gronwall's inequality applied to (AI4) 
show that N(t) = O( E2), uniformly in [0, T] since N(O) = 
O(E2) by (Allc). Consequently, from the definition of 
N(t) and (AI3) we conclude that IIR lit, IIRt lit, and IIRJt 
are O(E) uniformly in DT • We prove that II Rxx lit, IIRtt lit> 
and IIRodiit are also O(E) by the same argument that we 
used to establish Lemma 3. Sobolev's lemma now yields 

max I R(x, t) I = O(E), 
(x,! )ElJT 

which completes the proof of Theorem 4.2. 
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Coset symmetrization operators 

Robert Gilmore 
Physics Department University of South Florida, Tampa, Florida 33620 
(Received 3 October 1972; final revision received 21 July 1972) 

Coset symmetrization operators are presented and their properties discussed. Applications are indicated. 

I. INTRODUCTION 

Symmetrization operators based on group sums l -4 are 
useful for constructing states with a specified kind of 
symmetry. The usual group symmetrization operator is 
given by 

Ptv = (nA/ICI) 6 rtv(g)*g, 
gEG 

(1) 

where C is a finite group of order \C\, P is a unitary 
irreducible representation of C of dimension n A, and the 
sum is over all group elements g E C. These operators 
have a number of drawbacks: 

1. A spurious index occurs. in the projected state; 

2. the projected states are generally neither orthogo­
nal nor normalized to unity; 

3. they involve sums over an entire group, rather than 
just those group elements which produce distinct linear-
1y independent states; 

4. matrix representatives for each group operation 
must be constructed explicitly. 

II. MATHEMATICAL PRELIMINARIES 

For many problems of physical interest, the application 
of (1) can be considerably simplified. This occurs when­
ever the vector space V, on which PJ1~ is applied, carries 
a permutation 5 representation of C induced 6 •7 from the 
identity representation of a subgroup H C G. 

More specifically, let V be a linear vector space with 
basis vectors v 1, v 2, ... , V d and inner product (v i, V j) = 
oij' Assume that C acts transitively8 on the basis vec­
tors and permutes them among themselves. Let H C C be 
the stability subgroup of some particular basis vector, 
say VI' Then d = dim V = IcI/IHI, where \HI is the or­
der of H. The coset representatives eve 2, ... , Cd in 
C IH act effectively8 on v l' Assume that the basis vec­
tors for r A (C) are chosen so that the subduced6 • 7 repre­
sentation r A (C) J. H is in fully reduced block diagonal 
form. We indicate the rows and columns of rA(C) in 
which the identity representation y id(H) occurs in the re­
striction C J. H, by Or, r = 1,2, ... ,n(A, id). Here n(A, id) 
is the number of times yid(H) occurs in P (C) J. H. 

III. RESULTS 

It is a simple matter to show that P~~ projects the vector ° from VI unless II = Or' It is also straightforward to 
show that the coset symmetrization operators 

( 
n A ) 1/2 d 

St'O r = Icl/\HI ~ rt~O)C;)Ci (2) 

project fully symmetrized vectors from VI' Moreover, 
using the orthogonality and completeness rela­
tionsl-4.9-12 for the representations of C and H, it is 
straightforward to show that the vectors prOjected from 
VI (for all possible values of A, /l,r) span V, are orthogo­
nal, and are normalized to unity. The operator (2) in­
volves none of the difficulties possessed by (1): 
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1. There are no spurious indices. The state prOjected 
from VI USing St.o transforms like /lth partner in a 
basis for an irredJ'cible representation rA(C). There 
are n(A, id) distinct invariant subspaces in V which 
carry irreducible representations peG). 

2. The projected states are orthogonal and normalized 
to unity. 

3. The sum in (2) includes the minimal number of group 
elements necessary to construct symmetrized states. 

4. Only the matrix elements in the columns Or need be 
constructed explicitly. Moreover, they need be construc­
ted only for the d coset representatives C i' rather than 
for all the IC I group operations g. 

The operator (2) may easily be extended to the case 
where C is compact and H is a closed subgroup. 9-12 

IV. APPLICATIONS 

The operator (2) can be used to facilitate the construc­
tion of symmetrized many-electron states and sym­
metrized states for multilevel atomic systems, and for pro­
jecting symmetrized states suitable for energy band cal­
culations from plane waves. As an example, the symme­
trized spin states given by Schiff13 can be written down 
immediately using the matrix elements for representa­
tions of S3 given by Hamermesh14, together with the 
appropriate normalizing factor (n A \HI/ICI)1/2. 

V. CONCLUSION 

For vector spaces with the properties listed in Sec. II, the 
usual group symmetrization operator (1) simplifies (up 
to a constant multiple) to the coset symmetrization 
operator (2). The properties of this operator have been 
derived15 and described. 
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The Nagel-Moshinsky operators for U(p, 1) => U(P) 

J. Patera 
Centre de recherches mathematiques, Universite de Montreal, Montreal, Canada 
(Received 16 August 1972) 

It is shown that the operators of Nagel and Moshinsky which lower and raise the irreducible spaces of 
U(n~ I) contained in an irreducible space of U(n) are also the operators which lower and raise the 
irreducible spaces of U(n--I) contained in an irreducible space of U(Il~ I, I). The validity of this conclusion 
is demonstrated for all discrete, and continuous principal and supplementary series of representations of 

U(Il~I,I). 

I. INTRODUCTION 

Since all nontrivial unitary representations of real non­
compact semisimple Lie groups are infinit'e dimensional, 
standard problems (construction of bases with particu­
lar properties, calculation of matrix elements of opera­
tors, Clebsch-Gordan series and coefficients, etc.) are 
almost invariably more complicated than the same 
problems for the corresponding compact groups. It is 
worth noting, therefore, whenever the solution of a prob­
lem is valid for both the compact and the noncompact 
cases. 

The purpose of this paper is to demonstrate that the 
lowering and raising operators £:: and CR;;" constructed 
by Nagel and Moshinskyl for the group- subgroup pair 
U(n) ~ U(n - 1), coincide with similar operators for the 
pair U(n - 1, 1) ~ U(n - 1). These operators are of 
interest because the pairs U(p, 1) ~ U(p) (throughout 
the paper n = p + 1) are frequently considered in con­
nection with problems in quantum physics. 2 

Our demonstration depends on a suitable choice of for­
malism. Indeed, we have to give a new meaning to the 
symbols (generators and patterns) which appear in the 
definition of £:: and CR;;" as well as in their construction 
and final form. 

Many authors have described the irreducible unitary 
representations of the Lie algebras of U(n) and U(n -1, 1) 
in various degrees of completeness (cf. Refs. 3-5 and 
further references therein). A suitable formalism for 
our purpose would be either that of Gel'fand and Graev,3 
or that of Ottoson.5 Both of them use the chain of sub­
groups U(n - 1, 1) ~ U(n - 1) ::; U(n - 2) ~ ... ~ U(l), 
and each one is an extension of the pattern formalism of 
Gel'fand and Tseitlin1 . 3 for the compact U(n). They dif­
fer by a choice of some of the generators which results 
in a different definition of the top line of the U(n - 1,1) 
patterns. The formalism of Gel'fand and Graev is re­
markably simple, while that of Ottoson is formulated for 
all discrete and continuous series including the supple­
mentary one missing in Ref. 3. We choose the formal­
ism of Gel'fand and Graev, and as one of the results of 
this paper, we describe the supplementary series in the 
spirit of Ref. 3. This turns out to be an easy task once 
we know the results of Gel'fand and Graev for all other 
series. Using standard methods,4-6 one easily verifies 
that the representations of supplementary series, as 
described in Sec. II are, indeed, unitary, irreducible, and 
nonequivalent in the usual sense. 6 

In the formalism of Ref. 3, the definition and construction 
of the lowering and raising operators of Nagel and Mosh­
insky can be repeated step-by-step without modification 
for the U(n - 1, 1) case. The only differences between 
the Nagel-Moshinsky case and the present one, are the 
range of the variables hI.. and q~ which appear in the nor­
malization functions of £:;' and CR':" and, of course, the 
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Hilbert space in which the operators act. 

The present extension of the results for U(n) ~ U(n - 1) 
to U(n - 1, 1) ~ U(n - 1) is a straightforward one because 
in both cases the relevant subgroup is the same compact 
U(n - 1). For U(p, q) ~ U(p, q - 1), q > 1, a similar ex­
tension would require considerable modifications of the 
definition of the lowering and raiSing operators as well 
as their derivation because in this case the subgroup is 
the noncompact U(p, q - 1). Nevertheless, such modifi­
cations appear feasible at least for the lower and uppet' 
bounded discrete series of U(p, q) for which the Gel'fand­
Graev formalism is known. 3 Similar difficulties would 
arise for any pair U(n - 1, 1) ~ G or U(n) ~ G ,where 
G '" U(n -1). 

In Sec. II we describe the U(p, 1) representations. More 
precisely, we introduce orthonormal complete bases of 
patterns which span Hilbert spaces irreducible with 
respect to representations of the Lie algebra LP.l of 
U(p,l). Matrix elements of generators of the represen­
tations are given explicitly. Our description of discrete 
series is a particular case of Ref. 3, and the description 
of the principal continuous series is that of Ref. 3, 
whereas the description of the supplementary series 
appears for the first time in this form. A brief com­
parison is made with the pattern formalism for the com­
pact U(n). For the sake of clarity our description of 
these series is self contained; our notations are that of 
Ref. 1. Since no new derivation is necessary, Sec. In 
contains only comments on the derivation of Nagel and 
Moshinsky and their final form of £:: and CR':". Two 
examples are considered in Sec. IV. 

II. IRREDUCIBLE UNITARY REPRESENTATIONS 
OF U(p, 1) 

Following Gel 'fand and Graev3 we describe here dis­
crete and continuous series of irreducible unitary rep­
resentations of the Lie algebra LP.1 of the group U(p, 1) 
of complex matrices which leave invariant the bilinear 
form 

(1) 

A representation of Lp,l is unitary, if all operators of 
the representations are anti-Hermitian. A representa­
tion operator is a linear combination (with real coeffi­
cients) of the generators 

iC~, p.=1,2, ... ,p+1, 

Hi...~ = C; - C~, HA~ = iCC; + q),. A,P.:S p, 

Hp+1 •P = q+1 + Crt. H p+1 .P = i(C~+1. - q+l) (2) 

of the representation of LP.l. Here C(; satisfy the com­
mutation relations 
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The unitarity requirement implies that the generators 
C/; transform under Hermitian conjugation as follows: 

(C~)1" = C~, 

(C;)t = q, A;C M,A, M = 1,2, ..• ,p, 

(CP )t - _ CP+1 
P+1 - p' 

(4) 

A representation of the generators C(; is defined by their 
action on an orthonormal complete basis of patterns.3 

::: hnn)=a~_1Ih1')d_1) 
hll 
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+ a~_1Ih2'h_1-1)+ ••• + a~=ilhh-l,h-l-1), 

C h n nn 1 I h ) I 
hI .•• h ) 

h-1 •• , = bh- 1 l,h-1 + 1 
hll 

+ b~-11 h2 h-1 + 1) + ... + b~=i I hh-1 h-1 + 1), 
, , (5) 

where I hh~ ± 1) denotes the original pattern in which 
the value of the parameter hhJl was raised/lowered by 
one; and 

(

h ~ )V2 IT (hJ'h - h" h-1 - j + M + 1) n (hJ. h-2 - h" h-1 - j + M) 
J01~' )01'~' 

a~-1 = , 
n (hJ. h-1 - h" h-1 - j + M + l)(hJ. A-1- h" h-1- j + M) 
J"'Jl'~' ,~, 

(6) 

The properties of other generators besides C~, C~-l, and 
C~-l are obtained from (5) by means of (3). 

In order that the representation (5) is completely defined, 
one has to specify the series, to fix the irreducible rep­
resentation within the series, and to give the range of 
values the parameters hA Jl of a pattern can take in accor­
dance with the unitarity condition (4), irreducibility, and 
pairwise nonequivalence of the representations. On the 
right side of (5) it is understood that a pattern I hAJl ± 1) 
differs from zero only if its elements are still within the 
range of values admissible for the pattern on the left 
side of (5) 

A discrete series is defined by the value of a parameter 
S E (0,1,2, ... ,pl. An irreducible representation of a 
discrete series S is specified by the integers 

(7) 

The parameters hhJl are integers and satisfy the follow­
ing inequalities 

hA,Jl+l ~ hhJl ~ hA+1,Jl+I' A .;; M < p, (8) 
and 

hh-l,P+1 + 2 > hhP> hA,P+l 

if A';; S, where hO,P+l = co, 

hh+l,P+l> hAP> h A+2 ,p+l - 2 

if A> S, where hp +2 ,p+l = - co . 

The integers (7) specify an irreducible representation 
of the series S only if they satisfy also the sharp in­
equalities (9). 

(9) 

The commutation relations (3) are satisfied by (5), 
where the range of parameters hA is defined accord­
ing to (7)-(9), provided that t~e following phase conven­
tion is adopted: Let M A and M(; be the number of factors 
(brackets) in (6) and (6'), respectively, which change 
their signs whenever the U(p + 1) range of h AJl , 
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hh,Jj+l ~ hAil ~ h A+1 ,Jl+1' A';; /-I .;; p, 

is replaced by (8) and (9); then M/; = £1/; and 

'IT 
arga~_l = argb~_l = M/; "2 . 

(6') 

(10) 

(11) 

An irreducible unitary representation of the principal 
continuous series is specified by fixing the numbers 

h I * P+l,P+l = 2 P + z , 

where z and z * are complex conjugate numbers with 
Imz> O. Instead of (9), one has 

Equations (5), (6), and (8) hold as before. 

(7') 

(9') 

An irreducible unitary representation of the supplemen­
tary continuous series is given when the numbers 

h1,p+l =:: - i p + p, h 2 ,p+l ~ h 3 ,p+l ~ ••• ~ h p ,P+1' 

1 (7") hp+1,P~1 =:: p - 2 p, 

where 0 < p < i p are fixed. The remaining hA Jl are 
restricted by the inequalities (8) and (9'). Equations (5) 
and (6) are valid as before. 

For our purposes it is essential to notice the difference 
between the representations of LP,1 and LP +1. Equations 
(3), (5), (6), and (6') are common to both. For the com­
pact LP+1 one has 

(c/;)t=CJ:, A,/-I=1,2, ••• ,p+1, 

instead of (4), and (10) instead of (7), (8), and (9). 

III. REMARKS ABOUT THE DERIVATION OF £W 
and <R~ 

(12) 

The derivation of the raising and lowering operators of 
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Nagel and Moshinsky does not need to be modified in 
order to make their operators valid for the representa­
tions of U(p, 1) as described in Sec. II. Therefore we 
limit ourselves to the definitions of.B:; and iR::' and to 
pointing out the properties of the representations which 
are used in their derivation and are common to U(n) and 
U(p,I). For completeness, the final form of the opera­
tors is also shown. An equality from Ref. 1 is recalled 
by its number. There is no ambiguity because our num­
bering of equations never contains the decimal point. 

Let us first show that the definitions of the operators 
which lower and raise the irreducible spaces of U(n - 1) 
contained in an irreducible space of U(n), given by Nagel 
and Moshinsky, can be used as the definitions of the 
operators which lower and raise the irreducible spaces 
of U(n - 1) contained in a U(n - 1,1) irreducible space. 

The normalized operators .B;: and iR'i,. are defined by 
the following two requirements [cf. (2. 9') and (2.9")]: 

A. wp(.B;:lh)"Jl» = wJl(l h)..Jl»)-or:, 
(1 <S J.L<n) 

wJl (iR~n I h)"Jl» = wJl(1 h)"Jl» + or:. 

Here o;'isthe Kronecker symbol,.B;: I h)"Jl) and iRr;,. I h)"Jl) 

are some linear transformations of the pattern I h).. Jl)' 

and wJl is the J.Lth component of the weight of the pattern. 7 

It is given by 
Jl Jl-l 

WJl (I h)"Jl» = ~ h)"Jl - ~ h)..,Jl-l· 
).. = 1 )..=1 

(13) 

h2 ' • • • • • hn) 
ql q2··· q ",-1···Q,,_1' 

h2 

where I ; ) is a pattern 

I: ) == I hI ql h2 q2'.' qn-~ hn) 

(14) 

with h)..n == h).. and h)"Jl = h)..,n-l == q).. for A <S J.L = 1,2, ... , 
n-l. 

The requirement A can be applied to the patterns of 
U(n - 1,1) as well as U(n) because W Jl is the same func­
tion (13) of h).. Jl' Similarly the requirement B can be 
used because patterns (14) are found among patterns of 
every series of U(n - 1,1), as can be verified by inspec­
tion of the inequalities for h).. Jl in Sec. II. Because the 
irreducible space of U(n - 1) contained in that of 
U(n - 1,1), is given by q).. (A = 1,2, ... ,n - 1), the 
operators £; and iR'i,., indeed, raise and lower these 
spaces. 

The generators C; of U(n - 1,1) and U(n) satisfy the 
same commutation relations (3) and (2.2);they act on a 
U(n - 1,1) or U(n) pattern in the same way, (5) and (5'); 
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their matrix elements, (6) and (6'), are the same func­
tions of the elements h).. u of the pattern. The elements 
h)"Jl of the pattern. The elements II)"Jl of the lower n - 1 
levels of any U(n) or U(n - 1,1) pattern satisfy the 
same inequalities (8). Therefore one has also the im­
portant properties (2.7 and 2.8) 

h)· h) C~ I = q).. I ' q q 
A< n, 

(15) 

h) of patterns (14) regardless of whether I q belongs to a 

representation of U(n) or to any series of U(n - 1,1). 
Consequently, the unnormalized operators L:; and R':" 
for U(n) and U(n - 1,1) are the same polynomials of 
C; [cf. (2. 27a') and (2. 27b') and (2. 27a") and (2. 27b")]: 

L;: = ~ ~ C
-m-1 n-1 

peO Jlp >l1p-1>'" >11)=m+l 

X C m C I1 ) ••• C llp-1Cl1 p n (,;-1 n 
p ) n-l 

Jl) 112 Jlp n i-I mll i Jl=m+1 

n-l n-m-1 n-l 

R':" =ri1 "f1 \:-0 IIp>l1p _)>''' > Jl)=1 

X CIlP C Jlp-) ••• CJl) cn ~ 0-1) ";;1 0 
m I1p 112 Jl) i=l mJli Jl=1 mJl 

m-1 m-l m-l 

n Oml1 ~ ~ 
Jl=1 p=O JlJ/llp-1>'" >11)=1 

( ~ 0-1 ) C n C11) ••• Cllp-1 Cilp 
X i=1 IfIlli 11) Jl 2 Jl p til , 

where 1 <S m < n, and 

and also 
o 
n 0 111 == l. 

11"1 

(16) 

(17) 

The normalization functions N~m -1 and Nqqm+ 1 are defined 
by (5.2' and 5.2"): m m 

(18) 
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Since L:;' and R':n are polynomials in C; , the normaliza­
tion functions are linear combinations of products of 
matrix elements of generators C;. But these matrix 
elements are the same functions (6) and (6') of the ele­
ments hI.. ~ of patterns regardless of whether we deal 
with a representation of U(n) or U(n - 1,1). The par­
ticular patterns (14) which appear in (18) contain only 
elements hI.. (A = 1,2, ... ,n) and qJ1 (Ii = 1,2, ... ,n-l). 
Therefore N:m_1 and Nim+l are the same functions of hI.. 

m m 
and qJJ .as the normalization functions of Nagel and 
Moshinsky. They are equal to [cf. (5.11') and (5.11")]: 

(19) 

where 

qAIl = qA - qll + Ii- A. 

The phase in (19) is determined according to the conven­
tion of Sec. II. 

IV. TWO EXAMPLES 

Although the operators .e~ and CRi for U(I, 1) are triv­
ially derived, they are a transparent illustration of our 
result. The U(I, 1) and U(2) patterns are all of the type 
(14). From (5) and (6), we have 

C~ 1 hI q h2) = [(q _ h2)(h1 _ q + 1)]1/21 hI q _ 1 h2), 

Ci 1 hI q h2) = [(hI - q)(q - h2 + 1)]1/21 hI q + 1 h2). 

(20) 
Comparing (20) with the definition of .e~ and CRi, we have 
immediately 

.e~ = [(q - h2 )(h1 - q + 1)]-1/2 q, 
CRr = [(hI - q)(q - h2 + l)rl / 2 Cr, 

(21) 

which is exactly the form of .e~ and CRr found in Ref. 1. 
Operators (21) are those of U(2), if hI' h2 and q are in­
tegers such that hI ? q ? h2 • They belong to one of the 
discrete series if either q> hI ? h2 or hI ? h2> q for 
integer hI' h2 , and q. They belong to the principal series 
if hI = - i + z, h2 = i + z*, and q is any integer from 
(- rtJ, + rtJ). Finally they are the Nagel-Moshinsky 
operators for the supplementary series of U(I, 1) if 
hI = - i + p, h2 = i - p and q is any integer. One 
easily notices that the normalization functions Ni-l and 
Nq+1 are real for U(2) and purely imaginary for U(I, 1). 
T~gether with (4) and (12), it means that £! and CRi 
transform under Hermitian conjugation as (.e~)+ = CRi. 
Our second example is form U(2, 1). We take the 
operators £'3 and CR:;' of Sec. m, and verify by a straight­
forward computation that they satisfy the requirements 
A and B of Sec .. m for every series. 
There are five unitary series of L2.1 described in Sec. 
II by the following inequalities: 
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I. S = 0; h13? h23 ;, h33 

h12 ?hll ?h22' h23 >h12 >h33 -2,h33 > h22 >- rtJ. 

II. S =: 1; h13? h23 ? h33' 

h12 ? hll ? h22' rtJ> h12 > h13 ,h33 > h22> - rtJ. 

III. S = 2; h13? h23 ? h33' 

hI2 ?hll ;,h22 , rtJ>h12>hI3,hI3 + 2> h22> h23 • 

IV. h13 = - 1 + z, h23 integer, h33 = 1 + z*, 

hI2 ? hii ? h22' h12? h23 ? h22 · 

V. hI3 = - 1 + p, h23 integer, 

h33 = 1 - p, 0 < p < 1 

hI2 ? hll ? h22' h12? h23 ? h22 • 

Our subsequent reasoning holds not only for the series 
I-V of U(2, 1), but also for the U(3) one: 

VI. finite dimensional; 
integers h13 ;, hI2 ? h23 ? h22 ? h33' 

hI2 ? hll ? h22' h13? h12 ? h23 ? h22 ? h33 • 

Let us now recall the definition of C; for U(2, 1) and 
U(3). Omitting the top line h13 hfl~ h33 of each pattern, 
one has from the general rules {5} and (6): 
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The equalities (22) and (23) are valid for the series 
I-VI. Hence without specifying the particular series, 
i.e., by showing the range of parameters h12' h22' and 
h 11' we can verify that the two unnormalized operators Lj, 
L~,Rf,andR~ have the two required properties. 

Let us start with the lowering.operator L~. From (16) 

283 

(23) 

,------ .. _. __ ._-
I it follows that 

Ll - Cl(CI _ C2 + 1) + ClC2 - (Cl _ C2 + l)Cl + C2Cl 
3 - 3 1 2 2 3 - 1 2 3 3 2' 

(24) 

From (22) and (23), we find 

L§ 1 h12 h22) = (hll _ h22 + 1) ((h13 - h12 + 1)(h12 - h23)(h12 - h33 + l)(hll - h22 )) 1/2 I h12 - 1 h22) 

hll (h12 - h22)(h12 - h22 + 1) hll - 1 

_ h ) ((h I2 - hl1 + l)(h l3 - h22 + 2)(h23 - h22 + 1)(h22 - h33)) 1/2 I h12 h22 - 1 ) 
+ (hll 12 h - 1 . 

(h12 - h22 + 2)(h12 - h22 + 1) 11 

(25) 

The property A is readily verified from (13) and (25). 
Indeed, 

wI (I h12 - 1 h22)\ = wI (I h12 h22 - 1)\ 
hll - 1 ') hl1 - 1 ) 

= w
l 

(I hl2 h22)\ - 1, 
hl1 ') 

=W 1 (lhl2 h22 »). 
hll 

In order to verify the requirement B, we use Lj to a 
pattern (14) for which 

hl3 == hv h23 == h2' h33 == h3' 

hl2 == ql' h22 == q2' hll = ql' 
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(26) 

(27) 

I 
Clearly the values (27) of hAjj do not contradict the in­
equalities for any of the U(2, 1) and U(3) series of repre­
sentations. Inserting (27) into (25), we have 

L§ 1 ql q2) = [(ql - q2 + l)(h1 - ql + l)(ql - h2) 
ql 

Consequently, 

x (ql - h3 + 1)]1/21 ql-
1 

Q2). (28) 
ql - 1 

£j = [(ql - Q2 + l)(hl - Ql + I)(Ql - h3 + 1)tl / 2 L§. 

(29) 
That is precisely the form of the U(3) operator £§ of 
Nagel and Moshinsky which follows from (16) and (19). 
The same conclusion concerning aql is proved similarly. 

For the remaining operators £~ and <Hi the proof is ele­
mentary. As in the previous example they are just the 
generators C~ and Ci multiplied by the normalization 
functions equal respectively to (a~tl and (b~tl in which 
(27) is inserted. 
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Algebraically special perturbations of the Schwarzschild metric· 
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(Received 25 September 1972) 

Algebraically special perturbations of the Schwarzschild metric are found and expressed in a simple form. 
They become singular on the event horizon. 

I. INTRODUCTION 

The nature of gravitation collapse without spherical 
symmetry is a problem currently under widespread in­
vestigation. Price1 and others have shown that with 
appropriate boundary conditions first-order perturba­
tions of the Schwarzschild field with 12: 2 [the perturba­
tions are separable in spin-weighted spherical harmo­
nics S Y lm, (8, <p)] decay to zero as the Schwarz schild 
time increases to infinity. Here we investigate pertur­
bations of the Schwarzschild metric not by the a priori 
imposition of specific boundary conditions, but by re­
stricting our considerations to algebraically special 
vacuum fields. We use the equation given by Lind2 and 
Talbot3 that are obeyed by fields of the algebraically 
special class to derive the equations governing the 
algebraically speCial perturbations of Schwarzschild. 
These special perturbations can easily be solved for 
and expressed in simple form. In the general case 
when the degenerate principal null congruence has non­
vanishing twist, the special perturbations, for 1 2: 2, have 
terms involving both exponential growth and decay and 
thus the solution does not decay back to Schwarzschild 
(at least in this linearized perturbation). This does not 
contradict the result of Price due, apparently, to the fact 
that the restriction to algebraically special fields vio­
lates Price's initial conditions. 

II. THE PERTURBATIONS 

The metric for algebraically special fields has the 
form 2 

ds2 = 2(l dXI'/dr - Re wd~ _ UlvdXv) - d~~~ , (2.1) 
I' \' pP 2ppp2 

where I dx!' =du + Re(LdUP) and p = -l/(r + i2:,). The 
coordin~te r is an affine parameter for the degenerate 
principal null congruence with tangent vector ll'; and ~ 
and ~ are complex angular coordinates related to 8 and 
<p by ~ = e i¢ cot8/2. The divergence and twist of ll' 
are given by the real and imaginary part~ of p respec­
tively. The real quantities U and 2:,(u,~,~) and the com­
plex quantity ware given in terms of the real function 
P(u, ~, ~) and the complex auxiliary quantity L(u,~,~) by 

w = wOp + i - L Pip, 

U = UO + (P/P)r - Re(pl/lg), 

2i2:, = (5L + LL) - (c.c.), 

iwo = (52:, + LL + 22:,(£ - L pip), 

- 2Uo = ('6N + Ii; - PIP LN) + (c.c.), 

N = L + 5 log P, 

(2.2) 

where the degree superscript denotes the absence of r 
dependence, the dot denotes a lau, and 5 and is are defined 
as operators on quantities of spin weight4 s by 

tT) = 2pl-s :~ (psT)), 51) = 2pPs :~ (p-s1)); (2.3) 
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51) and 81) have spin weights s + 1 and s - 1, respectively. 

The spin weights of L,N, l/Ig, 2:" and Pare 1,-1,0,0, ° 
respectively. The complex quantity l/Ig and the quanti­
tities Land P satisfy the differential equations 

5l/1g + LJ,~ + 3£ l/I~ - 3L(PIP)l/Ig = 0, 

J,g - 3(pIP)l/Ig = 5l/1~ + LJ,~ + 2£l/I~ - 3L(PIP)l/I~, 
l/I~ - li/g = - 4i 2:, UO 

+ 2i Re[5W + LfV + iw - 2L(P/P)W], 

where 

W == 82:, + L..z + i2:, - (PIP)L2:" 

l/I~ = tiR + LR - 2(PIP)LR, 

R == 5N + rN - (PIP)NI + N2 - 2N8 10gP. 

The Schwarzschild solution is given by 

(2.4) 

l/IR = 2../2m == /J, P = Po == t(l + r~), L = 2:, = 0, 
(2.5a) 

where m is the mass; and the metric takes the form 

ds2 = 2(1- /Jlr)du2 + 2dudr - r2d~dV2P2. (2. 5b) 

We denote the Schwarzschild value of l/I~ by /J. 

We now assume that all quantities are given by their 
Schwarzschild value plus a small perturbation. In what 
follows instead of introducing additional notation for the 
perturbations, the symbol for each quantity will always 
mean that quantity's perturbation from its Schwarzschild 
value. When the perturbation expansion is put into Eqs. 
(2.4) and terms of second order (and higher) are 
dropped, we find the equations governing the perturba­
tions, 

50l/lg + 3/Ji = 0, 

l/Ig - 3{1i = 50l/l~, (2.6) 

l/Ig - ~g = 2i(5050 + 2) 2:" 

where 1 == PIPo, l/I~ = 5050(£ + 50/), 2i2:, = 5 0£ - ~oL, 
50 i~ defined by 5 01) == 2Pb-S(alar)(pg 1), and similarly 
for 50. 

By a c90rdinate transformation of the form u' = j(u, ~, ~), 
r' = rj-l, ~' = ~ [preserving the form of the metric 
given by Eq. (2.1)] we impose the condition that the 
"electric" part of L vanish (Le., Re80L = 0). This co­
ordinate condition is the linearized version of the canon­
ical coordinates of Aronson, Lind, Messmer, and New­
man. 5 

With this condition, the most general solution to Eqs. 
(2.6) that is expandable in sY1m , , l2: 2, is a linear com­
bination with respect to l, of solutions of the form, 

I 

l/Ig = eau ~ elm' oYlm " 
m':::-..-l 

I 

1 -1 -au" d Y = -3 e L..J 1m' 0 1m" 
/J m'=-I 

(2.7) 
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- 1 0 
L=-- tlOl/l2' 

3iJ.0! 
il/lg 

~=----"'---
(Z- l)(Z + 2) , 

where Q' is defined by 31J01 = (1- 1) l(l + 1)(1 + 2) and the 
constan!.s clm' and dim' must satisfy clm' = CI,-m" 
dim' = d l -m" The condition on Clm' means that 
Rel/lg = d, that is, the "electric" part of l/Ig vanishes. 
The condition on dim' merely reflects the fact that I 
is real. Note that the "electric" part of the field has 
e-UU time dependence and the "magnetic" part has eUU 

dependence. One might picture this behavior as arising 
from a body whose radial motion decays while its dif­
ferential rotation grows. 

The l/r part of the Weyl tensor (i.e., the radiation field 
at future null infinity) is given by 

l/IO __ I(z - 1) Z(l + l)(Z + 2) O! 

4 - 3iJ. 
I 

X ~ (c 1m' e UU + dim' e-Uu )_2 Y lm ,· 
m'=-l 

The radiation field (incoming) at past null infinity, to the 
approximation used here, vanishes. 

Perturbations with 1= 0 or I = 1 are, of course, also 
possible. The former is merely an addition to the mass 
and the latter is linearized Kerr solution. These are of 
no interest to us here. 

From a comparison of the theory of algebraically spe­
cial solutions2 ,3 with the theory of characteristic data6 

for the gravitational field, it is obvious that the imposi­
tion of algebraic specialness on the field must involve 
giving part of the data in a specific fashion. One can 
easily show that our results imply that the data for per­
turbations of Schwarzschild that are required to be alge-
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braically special (and twisting with Z ~ 2) are necessar­
ily Singular on the event horizon u = (Xl. Hence such per­
turbations cannot arise from data that differs from 
Schwarzschild data by a small amount. 

Because of the exponential growth with increasing u 
present in the perturbation, the linearized perturbation 
analysis done here must become invalid as an approxi­
mation after some time. This exponential behavior 
therefore does not preclude the logical possibility that 
with the nonlinearities taken into account there may 
exist well-behaved algebraically special fields that are 
initially close to Schwarzschild, deviate far from it, and 
finally return to Schwarzschild (or Kerr). 

A different possibility that can be imagined is that a 
nonsingular algebraically special solution initially close 
to Schwarzschild might correspond to a source whose 
small asymmetries cause it to bifurcate after some 
time. 

We have also considered the algebraically special per­
turbations of the Einstein-Maxwell equations about the 
Reissner-Nordstrom solution. The results are similar 
to those just described. The perturbations expandable in 
sYlm , have both eU'u and e-u'u dependence where 
c/ = o2()1+0 - 1)/0, 0== 32 f 2(l- 1)([ + 2)/9112 , f 

is the charge. 

"Research supported in part by the National Science Foundation. 
lR. H. Price, "Nonspherical Perturbations of Relativistic Gravitational 
Collapse," preprint. 

2R. W. Lind, Ph.D. thesis (University of Pittsburgh, 1970). 
3C. J. Talbot, Commun. Math. Phys. 13,45 (1969). 
4J. N. Goldberg, et al., J. Math. Phys. 8, 2155 (1967). 
58. Aronson, R. Lind, J. Messmer, and E. Newman, J. Math. Phys. 

12, 2462 (1971). 
6R. K. Sachs, J. Math. Phys. 3, 908 (1962). 



                                                                                                                                    

Asymptotic estimation of Fourier transforms and light cone dominance 
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The usual method of asymptotic estimation of Fourier transforms, the phase oscillation method, is examined. 
It is found that the usual argument of phase oscillation can be misleading due to either locations of 
singularities or absolute integrability of functions. As a by-product we have found that the scaling law for the 
inelastic e-p scattering should also be valid as the energy change V-+<x> regardless of the momentum 
transferred squared K, according to the usual approach of light cone dominance. 

I. INTRODUCTION 

One of the most frequently used tools in discussing ex­
treme high energy interactions in recent years has been 
the phase oscillation argument. This is simply because 
we have to deal with Fourier integrals most of the time 
in physics. Fourier integrals contain oscillating expo­
nential functions: And the phase oscillation argument 
which says that the most contribution comes from the 
region where the phase is bounded comes into play 
handily when high momentum cases are considered. In 
fact it enables us to conclude that the high momentum 
scattering processes can be realized through the be­
havior of currents near the light cone. Wilson'S expan­
sion1 of current products near the light cone thus be­
comes a powerful suggestion in these processes. In this 
manner, many interesting physical consequences, includ­
ing the celebrated scaling behavior, have been reported 
in the past two years by many authors. 1 - 3 

Unfortunately, the usual statement on the phase oscilla­
tion argument is not quite preCise. Recently objections 
against this argument were raised; counter-examples 
were illustrated.4 As this argument has been proven to 
be of great use, it is rather surprising to see that its 
justification has left much to be desired. 

In this paper this method of asymptotic estimation of 
Fourier transforms is reexamined. The preCise state­
ment is searched for through a fundamental theorem, 
the Riemann-Lebesgue lemma. After brief introduction 
of the phase oscillation argument in Sec. II, it is pointed 
out in Sec. III that a one-dimensional Fourier integral 
G (k) at k ~ 00 of a function F(z) is mainly controlled by 
F(z) near singular pOints, as it is clearly implied by the 
lemma. In fact, the usual phase oscillation argument 
makes sense only if the singularities of F(z) are at z = 0 
and F(z) with singularities subtracted away is abso­
lutely integrable. 

The two-dimensional case in which we are most in­
terested is not so straightforward. In Sec. IV the Fourier 
integral G (O!, (3) of a function F(u, v) is considered at the 
limit O! ~ 00 and {3 ~ 00 as well as the limit O! ~ 00 but {3 
fixed. Again based on the Riemann- Lebesgue lemma, it 
is concluded that G (O!, (3) at O! ~ 00 and (3 ~ 00 is con­
trolled not by the origin of the coordinate system but 
F(u, v) near singular regions. More interestingly it is 
shown that the same conclusion still follows at O! ~ 00 

but {3 fixed. It is then demonstrated in Sec. V that the 
usual conclusion of light cone dominance through the 
phase oscillation argument is valid only if the singu­
larities in the configuration space are only on the light 
cone and a condition of absolute integrability is satisfied. 
The result that the same asymptotic behavior should be 
observed at O! ~ 00 and (3 fixed is rather significant; it 
implies, among others, that the scaling behavior of struc­
ture junctions W(K, v) should exist as long as I' -) 00 
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regardless oj K. Some of the immediate impacts of this 
result' are discussed. 

Finally in Sec. VI comments regarding the phase oscilla­
tion method are made. The controversial counter exam­
ple raised by Sucher and Wo04 is also examined. 

II. PHASE OSCILLATION APPROACH 

In analyzing high energy behaviors of the inelastic e-p 
scattering process, we must consider the matrix ele­
ment of current (for simplicity scalar) commutators 
between single-nucleon states, spin averaged 

W(K, v) = J d 4x e- iqx (pI [j(x),j(o)]lp), (1 ) 

where K = q2 and v = - Pq/M. 

In recent literature2.3 it is customary to conclude 
through phase oscillation argument that the major con­
tribution to the function W at v ~ 00 and W = 2Mv/K 
fixed, comes from the current commutator near the light 
cone. The argument goes as follows. In the rest frame 

where p = (O,M) and q = (O,O,,jK + v2, v), the oscillating 
function at v ~ 00, w fixed is given by 

(2) 

Since most of the contribution to (1) comes from the 
'region where the phase is bounded, we see that the func­
tion W is dominated by the current commutator in the 
region where 

and 
Iz-tl<l/v 

Izl < w/M, 

thus, for time-like x, 

(3) 

(4) 

O::s - x 2 = (t - z)(t + z) - x 2 - y 2 ;S w/Mv ~ O. (5) 

This region, therefore, is near the light cone. 

The above argument is indeed not a proof. Recently 
several obj ections have been raised, using counter 
examples. 4 In fact, the above argument can be true only 
if F(x) is subject to certain properties as we shall see 
later. 

Since interesting physical consequences follow from the 
light cone dominance argument,2.3 it is important to 
clear up the above confUSion. There are two crucial 
pOints we must investigate. Firstly, more rigorous 
statement and proof ought to be searched. Secondly, 
since we are dealing with two-dimensional F.t. (Fourier 
transform) W(K, v) at v ~ 00 with K + 00 or fixed, the 
correlation between these two limiting processes must 
be studied carefully. We shall first study the first point 
in the next section. 
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III. ASYMPTOTIC ESTIMATION OF F.t.'S (FOURIER 
TRANSFORMS) IN ONE DIMENSION 

Consider an F.t.G(k) of a generalized function F(z) in 
one dimension. The behavior of G(k) at k ---7 00 can be 
best analyzed by the following theorem, a generalized 
version of the Riemann- Lebesgue lemma. 5 

Theorem: If the generalized function F(z) has a finite 
number of singularities z = z l' z 2' ... ,zM' and if (for 
each m from 1 to M) F(z) - fm (z) has absolutely integ­
rable Nth derivative in an interval including zm' where 
fm(z) is a linear combination of functions of the type 6 

Iz - zmlB, Iz - zmlB dz - zm)' Iz - zmlB loglz - zml, 

Iz - zmlB loglz - zml dz -zm) 

and Ii (p)(z - zm)' for different values of (3 and p, and if 
F (N)(Z) is well behaved at infinity, the F.t. G(k) satisfies 

M 

G (k) = E gm (k) + 0 (I k 1- N) as I k 1---7 00, 
m~l 

where gm(k) is the F.t. offm(z). 

For our present purpose it is enough to consider F(z) 
of the above theorem with singularities only at z = O. 
The asymptotic behavior of its F .t. is then 

as I kl ---700, 

where go(k) is the F.t. of functions which are singular 
at z = O. 

(6) 

We can now further see that the result in (6) is mainly 
controlled by the behavior of F(z) in I z I ::; 1/ I k I. This 
can be most easily seen if one notes that 

G(k) = i (i~ZO + I:: + f.~) dz e ikz ~(z) - F(Z + i)]. 
(7) 

where Z 0 ::; rr / I k I. Since F (z) is absolutely integrable in 
(- 00, - z 0)' it follows that 

i~O dz e ikz [F(Z) - F(Z + i)] 
-zo ( rr) I "" leo dz I F(z) - F z + Ii ---70, 

and the first integral in (7) vanishes as I k I ---700. The 
same is true for the third integral. Thus,G(k) is mainly 
determined by the second integral in (7), that is, by the 
behavior of F(z) in the interval where 

I z I ;:; 1/ I k I ---7 0, (8) 

where ":s" means "smaller or of the order of." 

In closing this section, the following comments are in 
order: (1) Customarily we say, by looking at the oscillat­
ing exponential function e ikz in an F.t:.> that the most con­
tribution to the F.t. comes from I z I ::::, 1/1 k I at I k I ---700. 
This can only be true if singularities are at z = 0 only. 
It should be clear from above that the major contribution 
comes from the regions where I z - zm I ;:; 1/1 k I, m = 
1, ... ,M, if singularities are at z = zl"" ,ZM' (2) Con­
tributions of singularities of F(z) to asymptotic be­
havior of G(k) are indeed most important. However, the 
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contribution of the nonsingular region of F(z) should not 
be totally ignored if we are interested in contributions 
from higher orders in l/lkl. Its effect to G(k) at Ikl---7oo 
depends on the existence of absolutely integrable deri­
vatives in an interval, as is clearly stated in the theorem. 
In all we see that the precise statement regarding the 
usual phase oscillation argument is essentially in the 
Riemann-Lebesgue lemma. 

IV. ASYMPTOTIC ESTIMATION OF F.t.'S IN TWO 
DIMENSIONS 

Consider now the F.t. of a function F(u, v) 

G(QI,{3) = J ei(ctu-Bv)F(u,v)du dv. (9) 

We are interested in the asymptotic behavior of G (QI, (3) 
at the limit: QI --7 00 and {3 --7 00 as well as at QI --7 00 but (3 
fixed. For our purpose, it is enough to consider F(u, v) 
which has Singularities only on lines u = 0 and v = O. 
We shall assume that F(u, v) is absolute integrable in 
the region away from Singularities and also that 
QI 2: {3 2: O. 

The two-dimensional case is a straightforward gene­
ralization of the one-dimensional case. We can again 
show that the major contribution to asymptotic G (QI, (3) 
comes from F(u,v) in the neighborhood of singular 
lines. We shall show this at the two limits (1) QI ---700 
and {3 --7 00 and (2) QI --7 00 but {3 fixed separately. 

(1) At QI --700 and (3 --700. To do this we write (9) as 

G(QI,{3) = J dv e- iBv g(v,QI), 

where 

g(v,QI) = J du eirxu F(u,v). 

(10) 

(11) 

Thus for some fixed v, g(v, QI) is an F.t. in one dimen­
sion. Taking into account that,for fixed v, F(u,v) has 
singularities only at u = 0, we can take over the result 
of the preceding section and conclude that the major 
contribution to g(v, QI) at QI --7 00 comes from F(u, v) in 
the region where, for some v, 

lul;Sl/Qi. (12) 

Now G(QI,{3) at QI --700 is again an F.t.of one dimension of 
variable (3. Since the only Singularities in g(v, QI) are at 
v = 0, we conclude in exact analogy to the above argu­
ment that the major contribution to G(QI --7 00, (3) at (3 --7 00 
comes from g( v, QI) in the region where 

I v I ;:; 1/{3. (13) 

Combining (12) and (13), we have finally that most of 
G(QI, (3) at QI --7 00, (3 --7 00 comes from F(u, v) in the region 
where 

luv I ::; 1/Q1{3, 

which indeed implies that the important region is the 
neighborhood of singular lines where luv I ~ O. 

(14) 

The above result is quite straightforward. However, let 
us note that the above proof cannot go through if not both 
QI and {3 go to 00. Next we shall consider just the case 
when QI --7 00 but {3 fixed. 

(2) At QI --700 but {3 fixed. For this case, we shall consider 
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(9) in a rotated frame where 

u' = cose u + sine v, v' = - sine u + cose v, (15) 

where e is some fixed angle, ilT > e > O. (9) becomes 

G(a,f3) = J ei(cx'u'-S'v')F(u',v')du'dv', (16) 

where 

a' = a cose - {3 sine, {3' = a sine + {3 cose. 

It should be noted that the singularities of the function 
F in the new coordinate system are on those two lines: 

u' = tane v' 
and 

u' = - cote v'. 

(17) 

(18) 

Furthermore, the limit a -700, {3 fixed, says that a' -700 

and f3' -700 in this rotated frame. We can now proceed in 
analogy to the case (1) by writing (16) as 

V. LIGHT CONE DOMINANCE 

We are now ready to see some physical consequences 
out of the mathematical results of preceding sections. 
Let us go back to the structure function given in Sec. II, 
viz. 

W(K, v) = J d 4x e-iqXF(x), 

where 

F(x) = (pl(j(x),j(o)]lp), 

which in the rest frame of p is given by 

W(K, v) = f dz dt e- i
(Q3

Z
-

Q
4

1)F(z, f), 

where 

q3 = ../K + v2, 

and 

F(z, t) = J dxdy F(x). 

(26) 

G(a',{3') = Jdv' e-iB'v' g(v',a'), 

where 

The structure function is therefore expressed as an F.t. 
(19) in two dimensions. In the infinite momentum frame it 

becomes 

g(v',a') = Jdu' eicx'u'F(u',v'). (20) 

Sinceg(v',a') for fixed v' is an F.t.of one dimension and 
F(u', v') for fixed v' has singularities only at u' = tane 
v' and u' = cote v', we must conclude that the major con­
tribution to g(v', a ') at a' -700 comes from F(u', v') in 
the region where 

lu' - tane v'l :$ 1/1 a'i (21) 

and the region where 

lu' + cote v'l :$ 1/1 a'i. (22) 

Again G(a', {3 ') at a' -7 00 is an F.t. in one dimension of 
the variable {3. The Singularities of g( v'; a ') are now 
only at v' = O. Thus, we conclude that the major contri­
bution to G(a' ---> 00, (3') at (3' ---> 00 comes from g( v'; Cl' ---> (3) 
in the region where 

Iv'l :$ 1/ 1{3' I. (23) 

Therefore, at a -7 00, {3 fixed, there are two important 
regions: One is specified by (21) and (23) and the other 
by (22) and (23). In terms of original coordinates system 
this means the following two regions: 

(A) I u I <.!. 1- sine u + cose vi < _1_. - (24) 
~ Cl' ~ Cl sme 

and 

(B) I I < sine I' I < 1 
v ~ a cose' - sme u + cose v ~ a sine' (25) 

It is not difficult to see that in both regions, 

I uv I .-) 0 as a ---> 00, for i IT > e > O. 

We thus have shown that at a -700, (3 fixed, the major con­
tribution to G(a, (3) comes from F(u, v) in the neighbor­
hood of the assumed Singular lines. In fact, we have 
shown that this is the case as long as a ---> 00 independent 
of the other variable {3. 
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W(K, v) = f du dv ei(ctu-Bv)F(u, v), 

where 

u = - i.f2(z - t), v = i.f2(z + t), 

and 

(27) 

a = iv'2[(K + v2)1/2 + II] and {3 = iJ2[(K + v2)1/2 - v]. 

Our purpose here is to examine the asymptotic behavior 
of W(K, v) at v ---> 00 with K or w fixed. From the result of 
Sec. IV, this asymptotic behavior must be mainly de­
termined by singularities of F(u, v). In physical cases it 
is natural to expect that the Singularities of current com­
mutators are only on the light cones. Thus, the singu­
larities of F(u, v) should be only on the lines u = 0 and 
v = O. The results of the preceding section immediately 
imply that W(K, v) at v ~ 00 is mainly determined by 
F(u, v) in the region where 

luvl ~ 0, (28) 

if F(u, v) is absolutely integrable in the region away 
from Singularities. Note that the above statement is 
true regardless of K. It should be clear that {3 -7 M / w if 
II ~ 00 and w fixed, whereas {3 ---> 0 if II -7 00 but K fixed. 
Nevertheless, since a ---> 00 at v ---> 00 with w fixed (i. e., the 
Bjorken limit) or at v -700 and K fixed (Le., the Regge 
limit), the above conclusion follows. Taking (28) together 
with the causal property, we can easily come to the conc­
lUSion that the major contribution to W(K, II) at v ...., 00 

comes from F(x) near the light cone where x 2 ~ 0. 2 ,3 

It should be noted that the above conclusion follows only 
for F(x) satisfying the conditions given in the stated 
Riemann-Lebesgue lemma. In particular, it should be 
emphasized that F(x) must be absolutely integrable. 

It is well known that the light cone expansion of F(x) 
naturally gives rise to the experimentally conformed 
phenomenon of scaling behavior. 2 ,3 This is indeed a 
direct result of the above conclusion that the asymptotic 
behavior of W(K, II) is mainly determined by F(x) near 
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the light cone. The result of our careful study, in fact, 
is much more than the usual scaling law which says that 
W(K, I) becomes a function of w only at the Bjorken limit 
(Le., I) ---> OCJ and w fixed); our study shows that this should 
be valid as long as l' ---> OCJ regardless of K.7 This has 
rather strong physical implications. One of the imme­
diate ones is that Bjorken's scaling behavior can now be 
compared with the Regge asymptotic behavior at large I) 

but any K. Another interesting one is that at I) ---> OCJ W(K, I) 

for any K is actually given by W(K, I) evaluated at K = 0, 
I) ---> OCJ.8 All of them, thus, put the usual approach of light 
cone dominance 2 ,3 to a severe test. We shall state these 
and other physical applications of our results elsewhere 
in order that we can confine ourselves only to the mathe­
matical aspect of the asymptotic properties of F .t. 's in 
this paper. 

VI. DISCUSSION 

In summary we have shown that only the neighborhoods 
of singularities of a function F(u, v) are significant to 
its F.t. G(ll, (3) at II ---> OC). Consequently it makes sense 
to consider Taylor's expansions of F(u, v) around singu­
larities in order to estimate G(ll, (3) at II ---> OCJ. A good 
application of this result is to make light cone expan­
sions of current commutators in order to estimate the 
asymptotic behavior of the structure functions for the 
inelastic e-p scattering. 2 We have concluded, as a result, 
that W(K, I)) of (1) yields the scaling law at I) ---> OCJ re­
gardless of K provided that the associated function F(x) 
in configuration space has finite number of Singularities 
and satisfies the appropriate condition of absolute inte­
grability as preCisely stated in the Riemann- Lebesque 
lemma. 

The following observations should be worth noting: 

(1) As the asymptotic behavior of an F.t. is essentially 
decided at Singularities, the usual phase oscillation 
argument can be misleading. The conclusion of the phase 
oscillating argument has nothing to do with the origins 
of coordinate systems. In fact, it follows only when there 
are Singularities at origins (or axes in multi-dimensional 
cases) and nowhere else. The asymptotic behavior of 
the F. t. of a function cannot be estimated at all without 
some knowledge of the function in the configuration 
space. 

(2) According to the theorem in Sec. III, the contributions 
to F.t. G(k) at k ---> OCJ come from two parts: (a) functions 
around singularities and (b) absolutely integrable func­
tions obtained after subtracting away appropriate singu­
lar functions. The second contribution is of o( 1 k 1- N) if 
the functions possess absolutely integrable Nth deriva­
tives. Thus, the usual argument that leading singulari­
ties dominate Fourier integrals in asymptotic regions 
can also be misleading; in order that there are no (or 
small) contributions from the nonsingular functions, it 
is necessary that they have absolutely integrable deriva­
tives of order N which might be high enough so that 
o( I k I-N) is small compared with the contributions due to 
the singular functions. 

As an example, consider the F.t. (26) with F(x) given by 
the function of Sucher and WOO,4 viz. 

F(x) = (x 2 - iE)-lu (x.p) + e-iP·xx26.F(x2,m2), (29) 

where u(.\) ---> constant as .\ ---> OCJ. The first term is singu­
lar. Nevertheless, as is pointed out by Sucher and Woo, 
the contribution to G(K, I) due to the first term does not 
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necessarily dominate at I) ---> OCJ and w fixed. In fact, it 
does not if I) ---> OCJ and w = 1. That this is not surprising 
can be seen if we note that the second term, even though 
continuous across the light cone, is not absolutely in­
tegrable [the exponential phase factor exp(- ipx) is 
really irrelevant]. The second term can, therefore, even 
make larger contribution than the singular term. 

(3) As the phase oscillation argument is based on the 
Riemann-Lebesgue lemma, the conditions on Singulari­
ties as well as the condition of absolute integrability 
should not be overlooked. Unfortunately these conditions 
are merely sufficient, not necessary, conditions. Conse­
quently, if the condition of absolute integrability is not 
satisfied, the phase oscillation argument is simply not 
applicable even though the result in some situations may 
still be consistent with it. The above example illustrates 
this point clearly: F(x) of (29) does give the consistent 
result as the phase oscillation argument in the Regge 
limit as well as in the Bjorken limit for w> 1, but not 
so if w = 1. 

To illustrate this point further, let us consider Eq. (29) 
without the exponential factor exp(- ipx). Again the 
second term is not absolutely integrable. The Riemann­
Lebesgue lemma again fails to work. Nevertheless, the 
second term vanishes in the Bjorken limit, but not in the 
Regge limit. 

(4) It is well known that the infinite momentum frame has 
many advantages in dealing with extreme high energy 
interactions. However, it is interesting to note, that if 
we stay in the infinite momentum frame (Le., to take 
e = ° in Sec. IV), we can only come to the conclusion of 
the light cone dominance at the Bjorken limit where 
llf3 = K ---> OC), but not at the Regge limit where llf3 = K fixed. 
In coming to the same conclusion at the Regge limit we 
must go off the infinite momentum frame as is shown in 
Sec. IV. This shortcoming of the infinite momentum 
frame can be avoided if we use the almost infinite mo­
mentum frame 9 which is essentially the particular case 
of rotated frame (u', v') in Sec. IV when e is infinitesi­
mally small. 

(5) As experimental data strongly suggest the scaling 
behavior even at low K, 1 0 our result that the region near 
the light cone dominates at I) ---> OCJ regardless of K appears 
very interesting indeed. Impact of this new consequence 
to various physical processes is under investigation. 
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Nonstandard analysis is a recent branch of mathematics in which usual notions about analysis and topology can 
be formulated in an attractive and condensed manner. The main feature of this theory is that it introduces the 
concept of infinitely large or small numbers and that it allows one to compute with them in exactly the same 
way as in ordinary analysis. We believe that in the long run this new language might be usefully applied to 
physics. However, we only present a few examples of a rather trivial nature, our purpose being to give a short 
introduction of the subject to physicists. Thus we omit most of the technical subtleties especially those of a 
metamathematical nature, and we concentrate our attention on the practical side of the theory. 

Nonstandard analysis is a recent branch of mathe­
matics in which usual notions about analysis and topo­
logy can be formulated in an attractive and condensed 
manner. We believe that in the long range this new lan­
guage might be usefully applied to physics. This article 
will show a few examples; but its main purpose is to in­
troduce the subject briefly to physicists. Thus, we omit 
some technical subtleties and many proofs, but we must 
assume that the reader knows the basic facts and nota­
tions of set theory, algebra, 1 and topology.2 For more 
precise physical applications, see Ref. 3. 

,. THE NONSTANDARD REAL NUMBERS 

The 17th century analysts thought of infinitesimals as of 
numbers smaller (in absolute value) than any positive 
real number, yet reproducing all the properties of the 
real numbers on an infinitely reduced scale. Although 
this intuitive view was useful to create analysis, it was 
later discarded as inconsistent by Cauchy. The theory 
presented here, the work of Professor Robinson,4 pro­
vides a coherent background to the intuitive approach. 5 

We begin by constructing an enlargement of the set of 
real numbers JR, i.e., a set *R containing R and also 
quantities interpreted as infinitely small or large 
numbers; moreover *R satisfies all algebraic and order 
related properties of R (except the Archimedian proper­
ty). In this framework, ordinary real numbers are 
called standard (in short: S), while the "generalized" 
numbers in *R are called nonstandard (NS). Thus the 
qualifier "nonstandard" should not be understood as the 
negation of "standard" but as its generalization. We 
also call *R the nonstandard extension of R. We want to 
stress that there is no simple relation at all between 
this *R (of algebraic origin) and the various compactifi­
cations of R that also introduce "points of infinity" by 
topological methods. 

A. Construction of the nonstandard real field *JR 

We shall start from Cauchy's conception of infinitely 
small or large quantities as a means of representing the 
limiting properties of real-valued functions. The sim­
plest example of such a problem is the study of se­
quences {UJnc;'; as n -'>oo,and it turns out that,for the 
practical purpose of constructing *JR, nothing else is 
necessary. 

Let & be the set of sequences of real numbers, turned 
into a commutative ring by the operations of termwise 
addition and multiplication. If *R exists, then with any 
{u n} E &, we want to associate a nonstandard (NS) num­
ber denoted [Un] ([Un] E *JR) that will,in some sense, 
describe {Un} asymptotically. We impose the following 
rules: 
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(1) *JR is a commutative ring, and the mapping 
{u n} ~ [Un] is a ring homomorphism from & onto *JR. 

(2) R is contained in *R, as a subring, and the number 
a E JR is the image by a of the constant sequence 
{Un = a}. 

(3) If for some no: (n > no ~ Un = V n) then [Un] = 
[Vn ]· 

The following method, called the ultrapower construction, 
gives a concrete realization of *R that has the extra 
property of being a totally (= linearly) ordered field, 
like JR. 

Choose once for all a free ultrafilter 6 'U on N (see 
Appendix) and define the relation for {un}, {Vn} E &: 

a.e. 
Un = ("almost everywhere") ~ {nl Un = V n } E 'U 

~ fJ{nlUn ;r V n }= O. 

From measure theory it follows that (a.e.) is an equiva­
lence relation and the quotient set & / a.e. is a ring. We 
define 

a.e. 
*R = &/= and [Un] = a{un} = equivalence class of {Un}' 

This just means that [Un] and [Vn] coincide iff Un a.e. Vn. 
This definition satisfies rules (1) to (3). 

Moreover, *R is a field: every a E *R, a ;r 0 has an in­
verse. 

Proof: a = [Un] for some {un} E &,and a ;r 0 ~ 
{n I Un = O} rf. 'U ~ [property (D) of the Appendix is 
essential here] {nl Un ;r O} E 'U-so that {l/Un} Can be 
defined a.e.and l/a = [1/Un ] because Un xl/Un a.e.1. 

Also *R can be ordered by the relation 

[Un]::; [Vn] ~ Una.e. ::; Vn· 

Again, property (D) is crucial to prove that the order 
is lotal, i.e., that any two a, b E *R can be compared 
(a ::; b or b ::; a). 

B. Structure and properties of *JR 

We just saw that *R is a totally ordered field, like R. 
Besides, R is a subset of *R, and its ordered field struc­
ture is the natural restriction of that of *R. All alge­
braic rules on R remain true on *R, and will be written 
the same way. For instance, "absolute value" will also 
denote the function on *R: 

I al = a if 0 ::; a, I a I = - a otherwise. 

Definitions: a E *JR is standard ~a E R; a E *R is 
finite <:::=> 3 b E JR: lal < b. 
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The set of finite numbers forms a ring noted Mo, or 0 (1). 
Otherwise, a E *JR is infinite <==:> V b E lR: I a I > b. For 
instance [A logn] , [Ana], [Ae an B 1 (where A, a, f3 are stan-
dard; A ~ 0; a, (3 > 0) are infinite numbers: 

a E *lR is infinitesimal <==:> V b E JR, - {o}: O:s I al < b. 

For instance, [n.logn.log(logn) ... (logpnll-1 (for A, 
standard and p integer) is a well-known scale of infinite­
simal numbers. 

The set of infinitesimals forms a ring noted Ml (or 0(1)]. 

We have the inclusions: Ml C Mo C *lR; lR C Mo C *R. 

a, b E *lR are infinitely close <=> a - b E M1 , 

this relation will be noted a ~ b. 

For any S-number x E lR, we define a subset of *lR, 
called the monad of x: /l(x) = {y E *Rly ~ x}. 

Iheore11l: Every finite number x E M ° lies in the 
monad of one (and only one) S-number Ox = st(x) E R, 
called the standm-d part of x. The mapping (sf) is a ring 
homomorphism with kernel M l' For Proof see Ref. 4, 
p.56. 

Intuitively the structure of * R is shown in Fig. I: Start­
ing from R, around every S-number we add the cluster 
of its infinitely close NS numbers (its monad). This way 
we get all the finite numbers. Then, on the negative and 
positive side, we add the infinite numbers. Here are now 
a few rules for the calculus on *R: 

Infinitesirnals: If x, y EM 1 and Z EM 0: x + y EM 1 
and xz E M1 • (M 1 is an ideal of the ring Mo') 

If x and yare S numbers and x < y, then /l(x) and /l(Y) 
are disjoint, with any number in /l(x) smaller than any 
number in /l(Y). 

Infinite numbers: (1) If w is infinite and a E lR: (a + w) 
and (a x w) are infinite (except for 0 x w = 0). This is a 
precise formulation of the well-known "rules": 
"a + 00 = 00" and "a x 00 = 00", but the reader should 
realize that, in general, a + w c;C wand a x w ~ w, be­
cause the rules of algebra remain valid. (2) If wand w' 
are infinite positive, (w + w') and (ww') are infinite pOSi­
tive. But (w - w') can a Priori lie anywhere in *R: This 
is a precise interpretation of the indetermination of 
"00 - 00"; however, in the *lR calculus, (w - w') has a 
value that is perfectly determined (by the values of 
wand w'), and its computation corresponds to lifting the 
indetermination in standard calculus. Other rules can 
be worked out by the reader; they always extend the 
rules valid on R. 

C. Enlargements related to *lR 

We can perform the same ultrapower construction as 
above with sequences {un}nEN where the condition 
Un E IR is changed. 

(1) If Un E C, we obtain the NS complex field *C that 
has the same relation to *lR as C has to R. 

(2) If Un E lRP (p finite, fixed), we obtain the NS vector 
space *(RP) over the field *lR. Obviously, it is the direct 
sum of p times the space *lR, i.e. *(IRP) = (*IR)P. 

(3) If Un E Z (set of integers), we obtain the set of NS 
integers, *z, obviously contained in *R. The structure 
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infinite < ° 
~ 

1110) = all) l1(a) 

,\1/ ,\1/ 
I I 

w' o a E R 

FIG.1. The nonstandard real line. 

infinite> 0 
~ 

w 

of * Z is shown in Fig. 2: The set of finite integers 
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(* Z n M 0) coincides with the standard set Z because no 
infinitesimal integers exist. The remaining numbers of 
*Z are infinite (positive or negative); they are also 
called *-finite to recall that, in the NS frame, they have 
all the properties of finite integers. The set *Z is 
uncountable. 

2. ENLARGEMENTS IN SET THEORY 

For any set E that can be defined according to Axio­
matic Set theory, an enlarged set * E can be found by 
the ultrapower construction, and the rules of formal 
logiC show that: 

(i) Many theorems true about the set E remain true 
about the set *E and vice versa; 
(ii) propositions dealing about limits (i.e., topological 
propositions) in E can be translated into Simpler pro­
positions about NS objects in *E. 

Mathematical propositions about E can refer to ele­
ments of E (" individuals"), but also to relations on E of 
any type. Until now, we have only considered individuals; 
since many theorems cannot be expressed in terms of 
individuals alone, we shall get deeper results by working 
with the higher-order structure on E, that consists of all 
individuals and relations of E. 

A. Description of the higher-order structure on E 

The relations on E are the elements of any of the follow­
ing sets: E; E x E (the set of ordered pairs of indivi­
duals), <P(E) (the set of subsets of E), and all sets deduc­
tible from E by finite successive applications of x and 
<P( ), such as <P(E x <P(E x E) x <P(<P(E))),for instance. 
Any relation belongs to one of those sets, and the order 
of succession of <P and x for that set defines the type of 
the relation. 

Examples on E = R: The order relation :S is a binary 
relation on R, and it is defined by its graph: G(:S) = 
{(x,y) E JR21x:s y}: a subset of (R x R);therefore:s is 
considered an element of <P(R x R). The same is true 
for any function from R to R (a function is always a 
relation). The law of multiplication on R, seen as a func­
tion on two variables, is an element of <P(R x R x R). 
The set £2(R) is an element of <P(<P(R x lR)). These 
examples show that all current mathematical objects 
are relations, including individuals, subsets, mappings, 
and relations in everybody's sense. 

Enlargement of E: The ultrapower construction is 
carried out simultaneously on the individuals and rela­
tions of E. 

(i) If {en} is a sequence of individuals of E, its equi-

infinite < 0 

~ 

-3 -2 -1 0 1 2 3 
!---K---K---X---)t--X---*--x---/ 

FIG. 2. The nonstandard integers, 

infinite> 0 

r-"---\ 

w w+l 
/·*--x--
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f(x) = 0(1) ) {f(X) EM 1 
f(x) = 0(1) f _ *. ~ f(x) EMO 
f continuous ( at Xo E R <=> 'Ix E R. x Xo =:> f(x) ~ f(x ) 
f has derivative C) f(x) - f(x~) 

---"-~C 

f is uniformly continuous on [a,b] <=> V x,y E *[a,bl: 
f(x) ~ f(y) 

FIG. 3. 

valence class (for the relation {e n } a.e. {e ~ }) defines an 
individual of * E (as in the case of JR, above) noted [en]' 

(ii) If {(en'!n)} is a sequence of pairs, (en,jn) E E x E, 
its equivalence class [(en,jn)] for the relation {(en,jn)} 
a.e{(e;,!~)} is identified with the pair ([en]' [tn]) E 

*E X E. All elements of (*E X *E) can be obtained this 
way (as in the case of JRP above). 

(iii) If {En} is a sequence of subsets, En E <P(E), its 
equivalence class [En] (for the relation {En} a.e·{E~} 
can be identified with the subset of all indiViduals 
[en] such that en aee·E n , therefore we write [En] E <P(*E). 
However, a II subsets of * E cannot be obtained this way. 
Those that cannot are called external; those that can are 
called internal; among the latter, those that are equiva­
lence classes of constant sequences are called standard. 
Generalizing: 

If {r n} is a sequence of relations on E of a fixed type, 
its class [r n] can be identified with a relation on * E of 
the same type. The relations on * E are external or 
internal (and among these: standard). 
By definition, all individuals are internal. 

Examples on E = JR: 

Subsets: if {En} is the constant sequence En = JR (or 
1,), then [En] = *JR (or *1,) (as defined above); if En = 
[a,b] (or (a,b],etc' .. ) where a,b E R,then [En] = *[a,b], 
the closed interval of *R with endpoints a and b (or: 
*(a, b], etc' . '). Therefore, *R, * 1" *[a, b]' *(a, b], etc' .. 
(if a, b E JR) are standard subsets, the nonstandard 
extensions to *JR of the corresponding sets in JR. 

If a, bare NS we can only say that the intervals of *R: 
[a, b), (a, b), etc' .. are internal subsets. The subsets R, 
Mo,M1 ,)..!(a) (for a E JR) are external. 

Relations,junctions: If {r n} is a constant sequence of 
relations with value +, x,:S, or any function JRm fRm' 
(m, m' finite), then [r n] is a standard relation, we"> choose 
to denote it by the same symbol +, x,:S or f, 7 remember­
ing that it is the NS extension to *R of the corresponding 
relation on IR. The functions x -7 x + W, X -7 xW , etc' .. 
(where W E *R) are internal. The function x -7 st(x) is 
external. 

The main theorem: If *E is an enlargement of E then 
the following are true: 

(1) Every mathematical notion that is meaningful for E, 
is meaningful for *E. 

X E T is an isolated point 
E C T is an open set 
E C T is a closed set 
T is a Hausdorff space 
T is a compact space 
T 1+ T' islcontinuous t t _ T 

bicontinuous\ a x E 

<=> IL(X) = {x} 
<=> V X E E: IL(X) C *E 
<=> V x E T-E: lL(x) n *E = <I> 
<=> V x,y E T,x ,. y: IL(X) n IL(Y) = <I> 
<=> V X E *T: x is "near-standard"ll 
<=> If(ILT(X)) C ILT'(f(x)) t 

f(/lT(X)) = ILT,(f(X)) \ 

lim f. = b jpointwise <=> V x E T t 'In infinite' f (x) ~ f(x) .-00 uniformly <=> V x E *T\ . • 

FIG.4. 
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(2) Every proposition that is true for E, is true for *E 
if we restrict our attention to the internal entities of the 
higher-order structure of * E. 
(3) Every proposition that is true for the internal 
entities of * E and is meaningful for E, is true for E. 
(4) Additional remarks: All individuals of *E are inter­
nal; *E is strictly bigger than E iff E is not a set with 
a finite number of elements. 

3. APPLICATIONS TO ANALYSIS AND TOPOLOGY 

A. Convergence of sequences 

A sequence {an} n E N is a function N -) R. Its NS exten­
sion is a standard function *N -) *R denoted by the same 
symbol {an}nE*N' Now an is defined for infinite n, too. 
Properties about {an}nEN can be translated into proper­
ties of {an}nE*N as follows 8 : 

lim an = a =;. 'rIn infinite: an ~ a, 
n-+OO 

nEN 

{an} is a Cauchy sequence=;. Vm, n infinite: am ~ an' 

B. Local properties of functions 

Let f be a function JR f JR; the same symbol will denote 
its NS extension to a Standard function *JR f *IR. Again, 
properties can be translated (see Fig. 3).9 "+ 

differentials: If f is a standard function, df is defined 
as the internal function with two arguments: 

df(x, h) = f(x + h) - f(x), where x E *R and hEM l' 

Riemann integration: If f is a function [a, b] f JR 
where [a, b] is a finite interval, then f is Riemann-inte­
grable and J: f = I <=:> for any subdiviSion (xo 
= a, xl>' .. , xn = b), where n E *N is infinite and 
Xj'::'" x j_1 = (b - a)/n, we have 

I = st(~ ~f(Xj))' 
Lebesgue integration: Equidistant subdivisions as 

above are too coarse to give the correct integral if we 
apply the formula to any measurable function. However, 
a more refined set of points {Xl' ... ,xn } (for some 
infinite n E *N )10 can be found (but not written explicitly) 
so that for every fELl [a, b], 

C. Topological spaces 

Let T be a space with a topology defined by the family cr 
of open sets, and let *T be an enlargement of T. For any 
(standard) x E T, the monad of x is the subset of *T: 

/J(X) = *V 
vET 
XEV 

The reader can cheCk that this definition, in the case of 
IR with the usual topology, coincides with the one already 
given. The monads are essentially dependent on the 
topology (the finer the latter, the smaller the former) 
and they describe the topological properties of T (Fig. 4). 

metric spaces: If T has a metric d(x, y), this has a 
nonstandard extension to a function *T x *T ~ *JR+. 
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Theorem: For x E T: It(x) = {y E *Tld(x,y) ~ a}. 
All properties in Fig. 4 remain valid; in addition: 

(i) T is a bounded space <== all points of *T are at 
finite distance from T. (Such points are called finite.) 

(ii) T is a complete space <==::> for any standard Cauchy 
sequence {xn } there exists an infinite n and an x E T 
such that xn ~ x. 

(iii) Properties of sequences of standard functions {fJ 
are translated in Fig. 5. 

Hilbert spaces: If H is a separable Hilbert space on 
C and {en} n EN is a basis of H, then *H is a Hilbert 
space on *C with basis {en} n E*'" Let pw be any internal 
projector of *H of rank w (w infinite, w E *N) satisfying 

'<Ix E *H: x is near-standard ==> Ilx - p wxll ~ o. 

Then the space H w = P w (*H) is finite-dimensional in the 
sense of *H (because its dimension is a well-defined 
number of *N) and approximates all points of H. This is 
interesting because all the machinery of finite-dimen­
sional linear algebra applies to H w' Many choices of H w 

are possible. For example, 

(i) take H w = subspace generated by {e l , ... , e w }; 

(ii) in the case of H = L2(1R), choose E ~ 0 positive such 
that EW is infinite, and define, for k E IR, and f E *H: 

1 f(n+l)E 
(P~ )(k) = EnE f(k')dk' 

if Ikl < EW and k E [nE,(n + l)E) 

= 0 otherwise. 

(H w is then a space of step functions.) 

If T is a bounded operator on H, we define: T w = P w T P w 

acting ~n H w' and conversely: T = (stoT wllH' so that 
all the Information about T is contained in the "finite­
dimensional" T w • 

4. APPLICATIONS TO PHYSICS 

It could be suitable for mathematical physics to assume 
that the position or the momentum space, for instance, 
are NS spaces and to perform all computations in the NS 
formalism, provided we take the standard part of the 
result at the end (this corresponds to the finite preci­
sion of the physical measuring process). We give two 
quantum mechanical examples of a trivial nature; but 
examples in statistical mechanics or other fields might 
be interesting too. 

A. The Dirac formalism 

First we recall well-known results: Given a self­
adjoint operator A on a Hilbert space H, we consider its 
spectral decomposition, i.e., the unique family E(A) AER 

of projectors of H satisfying12 

(1) for all A, It E IR: E(A)E(It) = E(min(A, It)); 

(2) E(- 00) = 0, E(+ 00) = 1, E(A + 0) = E(A) for all A; 

(3) A = r A'dE(A)' 
~ R ' 

where the operator limits involved in (2) and (3) are 
strong limits. 

The support of the measure dE(A) is the spectrum a of 
A, which consists of a pure point (eigenvalue) part a 
and an absolutely continuous spectrum a ac' We can ~~en 
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uniformly 

the family Un} is continuous 

<0=0> 'In E N 'Ix E T 

<0=0> 'In E N 

equicontinuous <0=0> 'In E *N 'Ix E T 

uniformly <0=0> 'In E *N 'Ix E *T 
equicontinuous 

FIG. 5. 

decompose Has: 

H = (iodE(A)) (H) 
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'1y E oS: 

y - x =- fn{Y) 
- fn(x) 

= (f dE(A)) (H) EB If dE(A)\ (H) = H EB H . 
0pp \-oac ') pp ac 

An essential property of H pp is that it is spanned by the 
eigenvectors of A; this result is widely used in quantum 
mechanics. A similar description of Hac would be use­
ful; but the corresponding "eigenstates" of A cannot 
qualify as vectors of H because they should have infinite 
norm. Such "generalized eigenstates" are defined by the 
use of nested Hilbert spaces,as a rule,13,14 but NS 
analysis provides an alternative description where all 
eigenstates, proper or generalized, are vectors of *H. 

Consider the NS spectral decomposition *A = (* A' dE(A) 
- R 

and define for some infinite integer w and all kE * Il the 
projectors E k/w = E[ (k + i)/ w]- E[ (k - i)/ w 1 the sub­
spaces H k/w = E k/w (* Hac), and the operator A w by the 
formulas 

A = *A on *H A k/w 1 n H w p p p p , w = . 0 klw' 

Then *H decomposes as a direct sum of eigenspaces of 
Aw: 

~nd the operator norm of (A - Aw) is 1/2w ~ 0, which 
Implies that for all near-standard x E *H 
II(*A-Aw)xll~o. ' 

On any standard interval where the continuous spectrum 
of A has finite multiplicity12 m, we can moreover choose 
projectors E ;./w of rank m onto subspaces H ;'/w of H k/w in 
such a way that the operator A~ = *A + Lk/wE'kl< still 
satisfies 11(* A - A ~ )xll ~ 0 for all neK~-st<fndard x; 
and A ~ also reproduces the original multiplicity of A. 
The proof is left to the reader. 

The nonstandard treatment of this problem is in no way 
unique; but all models should give the same numerical 
results provided these are finite. 

As an example, take the momentum representation in 
one-dimensional wave mechanics: H = L2(1R, dP);A = 
multiplication by p. Then *Hpp = {O}, and Hk/w is the 
one-dimensional space generated on *C by the function 
equal to 1 on the interval «(k - i)/w, (k + ~)/w], to 0 
elsewhere;A~ is multiplication by k/w on H;'I< . This 
approximation is similar to the finite box cut~ff used in 
constructive quantum field theory, 15 but our cutoff is 
infinite. 

B, The canonical commutation relations (eeR) 

Garding and Wightman 1 6 have written down all the repre­
sentations of the following CCR: [ak,ai] = 0kl(k, lEN). 
For any representation, the Hilbert space H is explicited 



                                                                                                                                    

296 A. Voros: Introduction to nonstandard analysis 

as a direct integral. Its NS extension *H is then a re­
presentation space for: [ak,aiJ = 0kl(k, l E *N). 

For any *-finite W E * I\: , we can cancel all the oscillators 
except ao' ... ,a w by applying some projector Pwon *H; 
P has all the properties mentioned in the section on 
HUbert spaces (except that its rank is not *-finite). 
Moreover, the space P w (*H) carries a representation of 
the CCR with a *-finite number of degrees of freedom, 
and the theorems about the finite case can be carried 
over: This reduced representation, an approximation of 
the original one, is a direct sum of equivalent irreduc­
ible representations. 

We hope that a more refined use of NS analysis might 
help classifying the representations of the CCR. 
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APPENDIX 

An ultrafilter on h is any family 'U of subsets of N 
satisfying the following properties 1 7: 

(A): cp if. 'U,N E 'U 

(B):Xl'X2 E 'U==:;:,X1 n X 2 E 'U 

(C): X E 'U,X c X' ==:;:. X' E 'U 

(D): for any Xc N: either X or its complement is an 
element of 'U [both cannot be, because of (A) and (B)]. 
'U is called a free ultrafilter if it satisfies: 

(E): if Xc N is a finite set, its complement is an element 
of '\1. 

As a consequence of the axiom of choice (or Zorn's 
lemma) there exists a free ultrafilter on N. There even 
exists an infinity of them, but they are all equivalent for 
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our practical purposes. 

Connection with measure theory: If '\1 is a free ultra­
filter, then define, for any subset Xc N: 

/-l(X) = 0 iff X if. 'U, /-l(X) = 1 iff X E 'U. 

Properties (A)-(D) imply that this is a measure18 de­
fined on all subsets of N; (E) implies that any finite 
subset has measure 0 and the whole set N has measure 
1. 

*Detache du CNRS. 
1See P. Halmos, Naive Set Theory (Van Nostrand, Princeton, N. J., 

1960). 
2See N. Bourbaki, To{!ologie g(~lIerale (Hermann. Paris, 1971), 
Chap 1. 2, 9. 

3p. Kelemen and A. Robinson, J. Math. Phys. 13, 1870 (1972). 
4A. Robinson, Non-Standard Analysis (North-Holland, Amsterdam, 

1966). 
5 A shorter account is given by W. Luxemburg, in Lecture Notes on NS 
Analysis (Caltech, Pasadena, Calif., 1966). 

61f we took an ultrafilter on an uncountable set, we would obtain a 
larger structure: Here we shall get the smallest nontrivial enlargement, 
which is sufficient for most purposes. 

7However, if a relation F is viewed as a subset, its extension is 
traditionally written * F. 

'See Ref. 4, pp. 60-63. 
9See Ref. 4, pp. 66- 81. 
lOHere a bigger *N is needed; see Ref. 5. 
llThis means: x - y for some yET 

l2See K. Yosida, Functional Analysis (Springer-Verlag, Berlin. 1961l), 
Chap. XI. 

13See J. E. Roberts, J. Math. Phys. 7, 1097 (1966). 
14See I. M. Gel'fand and N. Vi1cnkin, GClleralized FlIlIctio!ls (Academic, 
New York, 1964), Vol. 4, Chap. 1. 

ISSee J. Gtimm and A. Jaffe, Less Houches Summer School Lectures 
(1970), (Gordon and Breach, New York) (to appear). 

161n Proc. Natl. Acad. Sci. USA 40, 622 (1954). 
17See G. Choquet, Lectures on Analysis (Benjamin, New York, 1969), 
Chap. I, Sec. 4. 

18This measure is additive, but not countably additive. 
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